
Figure 9-1.

Figure 9-2. The Xylophone app
user interface

CHAPTER 9

Xylophone

It’s hard to believe that using technology to record
and play back music only dates back to 1878, when
Edison patented the phonograph. We’ve come so far
since then—with music synthesizers, CDs, sampling
and remixing, phones that play music, and even long-
distance jamming over the Internet. In this chapter,
you’ll take part in this tradition by building a
Xylophone app that records and plays music.

What You’ll Build
With the app shown in Figure 9-1 (originally

created by Liz Looney of the App Inventor team),
you can:

• Play eight different notes by touching colored
buttons on the

screen.

• Press a Play button to replay the notes you
played earlier.

• Press a Reset button to make the app clear any
notes you played earlier so that you can enter a
new song.

What You’ll Learn
This tutorial covers the following concepts:

• Using a single Sound component to play
different audio files.

• Using the Clock component to measure and
enforce delays between actions.

• Deciding when to create a procedure.

• Creating a procedure that calls itself.

• Advanced use of lists, including adding items, accessing them, and clearing the
list.

Getting Started
Connect to the App Inventor website and start a new project. Name it “Xylophone”,
and also set the screen’s title to “Xylophone”. Connect your app to your device or
emulator.

Designing the Components
This app has 13 different components (8 of which comprise the keyboard), which are
listed in Table 9-1. Because there are so many, it would get pretty boring to create all
of them before starting to write our program, so we’ll break down the app into its
functional parts and build them sequentially by going back and forth between the
Designer and the Blocks Editor, as we did with the Ladybug Chase app in Chapter 5.

Table 9-1. All of the components for the Xylophone app

Component type Palette group What you’ll name it Purpose

Button User Interface Button1 Play Low C key.

Button User Interface Button2 Play D key.

Button User Interface Button3 Play E key.

Button User Interface Button4 Play F key.

Button User Interface Button5 Play G key.

Button User Interface Button6 Play A key.

Button User Interface Button7 Play B key.

Button User Interface Button8 Play High C key.

Sound Media Sound1 Play the notes.

Button User Interface PlayButton Play back the song.

Button User Interface ResetButton Reset the song memory.

HorizontalArrangement Layout HorizontalArrangement1
Place the Play and Reset buttons
next to each other.

Clock User Interface Clock1
Keep track of delays between
notes.

150 Chapter 9: Xylophone

Chapter 9, Xylophone

Creating the Keyboard
 Our user interface will include an eight-note keyboard for a pentatonic (seven-note)
major scale ranging from Low C to High C. We will create this musical keyboard in this
section.

CREATING THE FIRST NOTE BUTTONS

Start by creating the first two xylophone keys, which we will implement as buttons.

1. From the User Interface category, drag a Button onto the screen. Leave its
name as Button1. We want it to be a long magenta bar, like that on a xylophone,
so set its properties as follows:

◦ Change the BackgroundColor property to Magenta.

◦ Change the Text property to “C”.

◦ Set the Width property to “Fill parent” so that it spans all the way across
the screen.

◦ Set the Height property to 40 pixels.

2. Repeat for a second Button, named Button2, placing it below Button1. Use the
same Width and Height property values, but set its BackgroundColor property to
Red and its Text property to “D”.

(Later, we will repeat step 2 for six more note buttons.)
The view in the Component Designer should look something like Figure 9-2.

Figure 9-3. Placing buttons to create a keyboard

151Creating the Keyboard

Creating the Keyboard

The display on your phone should look similar, although there will not be any
empty space between the two colored buttons.

ADDING THE SOUND COMPONENT

We can’t have a xylophone without sounds, so drag in a Sound component, leaving its
name as Sound1. Change the MinimumInterval property from its default value of 500
milliseconds to 0. This allows us to play the sound as often as we want, instead of
having to wait half a second (500 milliseconds) between plays. Don’t set its Source
property, which we will set in the Blocks Editor.

Download the sound files: http://appinventor.org/bookFiles/Xylophone/1.wav and
http://appinventor.org/bookFiles/Xylophone/2.wav. Unlike in previous chapters, where
it was okay to change the names of media files, it is important to use these exact
names for reasons that will soon become clear. You can upload the remaining six
sound files when directed to later.

CONNECTING THE SOUNDS TO THE BUTTONS

The behavior we need to program is for a sound file to play when the corresponding
button is clicked. Specifically, if Button1 is clicked, we’d like to play 1.wav; if Button2 is
clicked, we’d like to play 2.wav; and so on. We can set this up in the Blocks Editor, as
shown in Figure 9-3, by doing the following:

1. From the Button1 drawer, drag out the Button1.Click block.

2. From the Sound1 drawer, drag out the set Sound1.Source block, placing it in the
Button1.Click block.

3. Type “text” to create a text block. (This is quicker than going to the Built-In tab
and then the Text drawer, although that would work, too.) Set its text value to
“1.wav” and place it in the Sound1.Source block.

4. Add a Sound1.Play block.

Figure 9-4. Playing a sound when a button is clicked

We could do the same for Button2, as shown in Figure 9-4 (just changing the text
value), but the code would be awfully repetitive.

152 Chapter 9: Xylophone

Chapter 9, Xylophone

http://appinventor.org/bookFiles/Xylophone/1.wav
http://appinventor.org/bookFiles/Xylophone/2.wav

Figure 9-5. Adding more sounds

Repeated code is a good sign that you should create a procedure, which you’ve
already done in the MoleMash game in Chapter 3 and the Ladybug Chase game in
Chapter 5. Specifically, we’ll create a procedure that takes a number as a parameter,
sets Sound1’s Source to the appropriate file, and plays the sound. This is another
example of refactoring—improving a program’s implementation without changing its
behavior, a concept introduced in the MoleMash tutorial. We can use the Text
drawer’s join block to combine the number (e.g., 1) and the text “.wav” to create the
proper filename (e.g., “1.wav”). Here are the steps for creating the procedure we need:

1. Under the Built-In tab, go to the Procedures drawer and drag out the to
procedure do block. (Unless otherwise specified, you should choose the version
with “do”, not “result”.)

2. Add the parameter by clicking on the little blue icon on the to procedure do
block, dragging over an input, and changing its name from “x” to “number”.
You might want to review Figure 5-6 from Chapter 5.

3. Click the name of the procedure, which by default is “procedure” and set it to
“PlayNote”.

4. Drag the Sound1.Source block from Button1.Click into PlayNote to the right of
the word “do”. Move the Sound1.Play block into PlayNote as well.

5. Drag the 1.wav block into the trash can.

6. From the Text drawer, drag the join block into Sound1.Source’s socket.

7. Type “number” and move it to the top socket of the join block (if it is not
already there).

8. From the Text drawer, drag the text block into the second socket of the join
block.

9. Change the text value to “.wav”. (Remember not to type the quotation marks.)

10. From the Procedures drawer, drag out a call PlayNote block and place into the
empty body of Button1.Click.

11. Type “1” and put it in the “number” socket.

153Creating the Keyboard

Creating the Keyboard

Now, when Button1 is clicked, the procedure PlayNote will be called, with its
number parameter having the value 1. It should set Sound1.Source to “1.wav” and
play the sound.

Create a similar Button2.Click block with a call to PlayNote with a parameter of 2.
(You can copy the existing call PlayNote block and move it into the body of
Button2.Click, making sure to change the parameter.) Your program should look like
Figure 9-5.

Figure 9-6. Creating a procedure to play a note

INSTRUCTING ANDROID TO LOAD THE SOUNDS

If you tried out the preceding calls to PlayNote, you might have been disappointed by
not hearing the sound you expected or by experiencing an error or unexpected delay.
That’s because Android needs to load sounds at runtime, which entails some lag
before they can be played. This issue didn’t come up earlier because filenames placed
in a Sound component’s Source property in the Designer are automatically loaded
when the program starts. Because we don’t set Sound1.Source until after the program
has started, that initialization process does not take place. We have to explicitly load
the sounds when the program starts up, as shown in Figure 9-6.

Figure 9-7. Loading sounds when the app launches

154 Chapter 9: Xylophone

Chapter 9, Xylophone

Test your app Touch the buttons and check if the notes play
without delay. (If you don’t hear anything, make sure that the
media volume on your phone is not set to mute.)

IMPLEMENTING THE REMAINING NOTES

Now that we have the first two buttons and notes implemented and working, add the
remaining six notes by going back to the Designer and downloading the sound files:

• http://appinventor.org/bookFiles/Xylophone/3.wav

• http://appinventor.org/bookFiles/Xylophone/4.wav

• http://appinventor.org/bookFiles/Xylophone/5.wav

• http://appinventor.org/bookFiles/Xylophone/6.wav

• http://appinventor.org/bookFiles/Xylophone/7.wav

• http://appinventor.org/bookFiles/Xylophone/8.wav

Then, create six new buttons, following the same steps as you did for the previous
two but setting their Text and BackgroundColor properties as follows:

• Button3 (“E”, Pink)

• Button4 (“F”, Orange)

• Button5 (“G”, Yellow)

• Button6 (“A”, Green)

• Button7 (“B”, Cyan)

• Button8 (“C”, Blue)

You might also want to change Button8’s TextColor property to White, as shown in
Figure 9-7, so it is more legible.

155Creating the Keyboard

Creating the Keyboard

http://appinventor.org/bookFiles/Xylophone/3.wav
http://appinventor.org/bookFiles/Xylophone/4.wav
http://appinventor.org/bookFiles/Xylophone/5.wav
http://appinventor.org/bookFiles/Xylophone/6.wav
http://appinventor.org/bookFiles/Xylophone/7.wav
http://appinventor.org/bookFiles/Xylophone/8.wav

Figure 9-8. Putting the remaining buttons and sounds in the Component Designer

Back in the Blocks Editor, create Click blocks for each of the new buttons with
appropriate calls to PlayNote. Similarly, add each new sound file to
Screen.Initialize, as shown in Figure 9-8.

Figure 9-9. Programming the button click events to correspond to all the keyboard keys

Test your app You should now have all the buttons, and each
one will play a different note when you click it.

156 Chapter 9: Xylophone

Chapter 9, Xylophone

Recording and Playing Back Notes
Playing notes by pressing buttons is fun, but being able to record and play back songs
is even better. To implement playback, we will need to maintain a record of played
notes. In addition to remembering the pitches (sound files) that were played, we must
also record the amount of time between notes, or we won’t be able to distinguish
between two notes played in quick succession and two played with a 10-second
silence between them.

Our app will maintain two lists, each of which will have one entry for each note
that has been played:

• notes, which will contain the names of the sound files in the order in which
they were played.

• times, which will record the points in time at which the notes were played.

Note Before continuing, you might want to review lists, which are
covered in the Presidents Quiz in Chapter 8 and in Chapter 19.

We can get the timing information from a Clock component, which we will also use
to properly time the notes for playback.

ADDING THE COMPONENTS

In the Designer, you will need to add a Clock component and Play and Reset buttons,
which you will put in a HorizontalArrangement:

1. From the Sensors drawer, drag in a Clock component. It will appear in the
“Non-visible components” section. Uncheck its TimerEnabled property because
we don’t want its timer to go off until we tell it to during playback.

2. Go to the Layout drawer and drag a HorizontalArrangement component
beneath the existing button. Set its Width property to “Fill parent.”

3. From the User Interface drawer, drag in a Button. Rename it "PlayButton" and
set its Text property to “Play”.

4. Drag in another Button, placing it to the right of PlayButton. Rename the new
Button "ResetButton" and set its Text property to “Reset”.

The Designer view should look like Figure 9-9.

157Recording and Playing Back Notes

Recording and Playing Back Notes

Figure 9-10. Adding components for recording and playing back sounds

RECORDING NOTES AND TIMES

We now need to add the correct behavior in the Blocks Editor. We will need to
maintain lists of notes and times and add to the lists whenever the user presses a
button.

1. Create a new variable by going to the Variables drawer and dragging out an
initialize global to block from the Definition drawer.

2. Change the name of the variable to “notes”.

3. Open the Lists drawer and drag a create empty list block out, placing it in the
socket of the initialize global to block.

This defines a new variable named “notes” to be an empty list. Repeat the steps for
another variable, which you should name “times”. These new blocks should look like
those in Figure 9-10.

Figure 9-11. Initialize two variables to store the notes and the timing information

How the blocks work

Whenever a note is played, we need to save both the name of the sound file (to the
list notes) and the instant in time at which it was played (to the list times). To record

158 Chapter 9: Xylophone

Chapter 9, Xylophone

the instant in time, we will use the Clock1.Now block, which returns the current instant
in time (e.g., March 12, 2011, 8:33:14 AM), to the nearest millisecond. These values,
obtained through the Sound1.Source and Clock1.Now blocks, should be added to the
lists notes and times, respectively, as shown in Figure 9-11.

Figure 9-12. Adding the sounds played to the list

159Recording and Playing Back Notes

Recording and Playing Back Notes

For example, if you play “Row, Row, Row Your Boat” [C C C D E], your lists would
end up having five entries, which might appear as follows:

• notes: 1.wav, 1.wav, 1.wav, 2.wav, 3.wav

• times [dates omitted]: 12:00:01, 12:00:02, 12:00:03, 12:00:03.5, 12:00:04

When the user presses the Reset button, we want the two lists to go back to their
original, empty states. Because the user won’t see any change, it’s nice to add a small
Sound1.Vibrate block to indicate that the key click was registered. Figure 9-12 shows
the blocks for this behavior.

Figure 9-13. Providing feedback when the user resets the app

PLAYING BACK NOTES

As a thought experiment, let’s first look at how to implement note playback without
worrying about timing. We could (but won’t) do this by creating these blocks as
shown in Figure 9-13:

• A variable count to keep track of which note we’re on.

• A new procedure, PlayBackNote, which plays that note and moves on to the
next one.

• Code to run when PlayButton is pressed that sets the count to 1 and calls
PlayBackNote unless there are no saved notes.

160 Chapter 9: Xylophone

Chapter 9, Xylophone

Figure 9-14. Playing back the recorded notes

How the blocks work

This might be the first time you’ve seen a procedure make a call to itself. Even though
at first glance this might seem bogus, it is in fact an important and powerful
computer science concept called recursion.

To get a better idea of how recursion works, let’s step through what happens if a
user plays/records three notes (1.wav, 3.wav, and 6.wav) and then presses the Play
button. First, PlayButton.Click starts running. Because the length of the list notes is
3, which is greater than 0, count is set to 1, and PlayBackNote is called:

1. The first time PlayBackNote is called, count = 1:

◦ Sound1.Source is set to the first item in notes, which is 1.wav.

◦ Sound1.Play is called, playing this note.

◦ Because count (1) is less than the length of notes (3), count is incremented
to 2, and PlayBackNote is called again.

2. The second time PlayBackNote is called, count = 2:

◦ Sound1.Source is set to the second item in notes, which is 3.wav.

◦ Sound1.Play is called, playing this note.

161Recording and Playing Back Notes

Recording and Playing Back Notes

◦ Because count (2) is less than the length of notes (3), count is incremented
to 3, and PlayBackNote is called again.

3. The third time PlayBackNote is called, count = 3:

◦ Sound1.Source is set to the third item in notes, which is 6.wav.

◦ Sound1.Play is called, playing this note.

◦ Because count (3) is not less than the length of notes (3), nothing else
happens, and playback is complete.

Note Although recursion is powerful, it can also be dangerous. As a
thought experiment, ask yourself what would have happened if the
programmer forgot to insert the blocks in PlayBackNote that
incremented count.

Although the recursion is correct, there is a different problem with the preceding
example: almost no time passes between one call to Sound1.Play and the next, so
each note is interrupted by the next note, except for the last one. No note (except for
the last) is allowed to complete before Sound1’s source is changed and Sound1.Play is
called again. To achieve the correct behavior, we need to implement a delay between
calls to PlayBackNote.

PLAYING BACK NOTES WITH PROPER DELAYS

We will implement the delay by setting the timer on the clock to the amount of time
between the current note and the next note. For example, if the next note is played
3,000 milliseconds (3 seconds) after the current note, we will set
Clock1.TimerInterval to 3,000, after which PlayBackNote should be called again.
Make the changes shown in Figure 9-14 to the body of the if block in PlayBackNote
and create and fill in the Clock1.Timer event handler, which specifies what should
happen when the timer goes off.

162 Chapter 9: Xylophone

Chapter 9, Xylophone

Figure 9-15. Adding delays between the notes

How the blocks work

Let’s assume the following contents for the two lists:

• notes: 1.wav, 3.wav, 6.wav

• times: 12:00:00, 12:00:01, 12:00:04

As Figure 9-14 shows, PlayButton.Click sets count to 1 and calls PlayBackNote.

1. The first time PlayBackNote is called, count = 1:

◦ Sound1.Source is set to the first item in notes, which is “1.wav”.

◦ Sound1.Play is called, playing this note.

◦ Because count (1) less than the length of notes (3), Clock1.TimerInterval is
set to the amount of time between the first (12:00:00) and second items in
times (12:00:01): 1 second. count is incremented to 2. Clock1.Timer is
enabled and starts counting down.

Nothing else happens for 1 second, at which time Clock1.Timer runs,
temporarily disabling the timer and calling PlayBackNote.

2. The second time PlayBackNote is called, count = 2:

◦ Sound1.Source is set to the second item in notes, which is “3.wav”.

◦ Sound1.Play is called, playing this note.

◦ Because count (2) less than the length of notes (3), Clock1.TimerInterval
is set to the amount of time between the second (12:00:01) and third items
in times (12:00:04): 3 seconds. count is incremented to 3. Clock1.Timer is
enabled and starts counting down.

163Recording and Playing Back Notes

Recording and Playing Back Notes

Nothing else happens for 3 seconds, at which time Clock1.Timer runs,
temporarily disabling the timer and calling PlayBackNote.

3. The third time PlayBackNote is called, count = 3:

◦ Sound1.Source is set to the third item in notes, which is “6.wav”.

◦ Sound1.Play is called, playing this note.

◦ Because count (3) is not less than the length of notes (3), nothing else
happens. Playback is complete.

The Complete App: Xylophone
Figure 9-15 shows the final block configuration for the Xylophone app.

164 Chapter 9: Xylophone

Chapter 9, Xylophone

Figure 9-16. The blocks for Xylophone

Variations
Here are some alternative scenarios to explore:

• Currently, there’s nothing to stop a user from clicking ResetButton during
playback, which will cause the program to crash. (Can you figure out why?)
Modify PlayButton.Click so it disables ResetButton. To re-enable it when the
song is complete, change the if block in PlayButton.Click into an if else
block, and re-enable ResetButton in the else portion.

• Similarly, the user can currently click PlayButton while a song is already
playing. (Can you figure out what will happen?) Make it so PlayButton.Click

165Variations

Variations

disables PlayButton and changes its text to “Playing...” You can re-enable it and
reset the text in an ifelse block, as described in the previous bullet.

• Add a button with the name of a song, such as “Für Elise”. If the user clicks it,
populate the notes and times lists with the corresponding values, set count to 1,
and call PlayBackNote. To set the appropriate times, you’ll find the
Clock1.MakeInstantFromMillis block useful.

• If the user presses a note, goes away and does something else, and then comes
back hours later and presses an additional note, the notes will be part of the
same song, which is probably not what the user intended. Improve the program
by 1) stopping recording after some reasonable interval of time, such as a
minute; or, 2) putting a limit on the amount of time used for
Clock1.TimerInterval by using the max block from the Math drawer.

• Visually indicate which note is playing by changing the appearance of the
button—for example, by changing its Text, BackgroundColor, or
ForegroundColor.

Summary
Here are some of the ideas we covered in this tutorial:

• You can play different audio files from a single Sound component by changing
its Source property. This enabled us to have one Sound component instead of
eight. Just be sure to load the sounds at initialization to prevent delays
(Figure 9-6).

• Lists can provide a program with memory, with a record of user actions stored
in the list and later retrieved and reprocessed. We used this functionality to
record and play back a song.

• You can use the Clock component to determine the current time. Subtracting
two time values gives us the amount of time between two events.

• You can set the TimerInterval property for Clock within the program, such as
how we set it to the duration of time between the starts of two notes.

• It is not only possible but sometimes desirable for a procedure to make a call to
itself. This is a powerful technique called recursion. When writing a recursive
procedure, make sure that there is a base case in which the procedure ends,
rather than calling itself, or the program will loop infinitely.

166 Chapter 9: Xylophone

Chapter 9, Xylophone

	Xylophone
	What You’ll Build
	What You’ll Learn
	Getting Started
	Designing the Components
	Creating the Keyboard
	Recording and Playing Back Notes
	The Complete App: Xylophone
	Variations
	Summary

