
Figure 18-1.

CHAPTER 18

Programming Your App to Make Decisions:
Conditional Blocks

Computers, even small ones like the phone in
your pocket, are good at performing millions of
operations in a single second. Even more
impressively, they can also make decisions based
on the data in their memory banks and logic
specified by the programmer. This decision-making
capability is probably the key ingredient of what
people think of as artificial intelligence, and it’s
definitely a very important part of creating smart,
interesting apps! In this chapter, we’ll explore how to build this decision-making logic into
your apps.

Figure 18-2. An event handler that
tests for a condition and branches
accordingly

Chapter 14 discusses how an app’s behavior is
defined by a set of event handlers. Each event
handler executes specific functions in response
to a particular event. The response need not be a
linear sequence of functions, however; you can
specify that some functions be performed only
under certain conditions. For example, a game
app might check if a player’s score has reached
100, or a location-aware app might ask if the
phone is within the boundaries of some
building. Your app can ask such questions and,
depending on the answer, proceed accordingly.

Consider the diagram in Figure 18-1. When the
event occurs, function (block) A is performed.
Then, a decision test is performed. If the test is
true, B1 is performed. If it is false, B2 is
performed. In either case, the rest of the event
handler (C) is completed.

Because app decision diagrams like this one
look something like trees, we say that the app
“branches” one way or the other depending on
the test result. So, in this instance, you’d say, “If
the test is true, the branch containing B1 is
performed.”

Testing Conditions with if
and else if Blocks

To allow conditional branching, App Inventor provides an if-then conditional block
in the Control drawer. You can extend the block with as many else and else if
branches as you’d like by clicking the blue icon, as shown in Figure 18-2.

286 Chapter 18: Programming Your App to Make Decisions: Conditional Blocks

Chapter 18, Programming Your App to Make Decisions: Conditional Blocks

Figure 18-3. The if and else if conditional blocks

You can plug any Boolean expression into the test sockets of the if and else if
blocks. A Boolean expression is a mathematical equation that returns a result of either
true or false. The expression tests the value of properties and variables by using
relational and logical operators such as those shown in Figure 18-3.

Figure 18-4. Relational and logical operator blocks used in conditional tests

The blocks you put within the “then” socket of an if block will only be executed if
the test is true. If the test is false, the app moves on to the ensuing blocks.

For a game, you might plug in a Boolean expression for checking a player’s score,
as shown in Figure 18-4.

287Testing Conditions with if and else if Blocks

Testing Conditions with if and else if Blocks

Figure 18-5. A Boolean expression used to test the value of the variable score

In this example, a sound file is played if the score is greater than 100. In this
example, if the test is false, the sound isn’t played and the app jumps below the entire
if-then block and moves on to the next block in your app. If you want a false test to
trigger an action, you can use an else or else if block.

Programming an Either/Or Decision
Consider an app that you could use when you’re bored: you press a button on your
phone, and it calls a random friend. In Figure 18-5, a random integer block is used to
generate a random number and then an if else block calls a particular phone
number based on that random number.

Figure 18-6. This else if block calls one of two numbers based on the randomly
generated integer

In this example, random integer is called with arguments 1 and 2, meaning that
the returned random number will be 1 or 2 with equal likelihood. The variable
RandomNum stores the random number returned.

After setting RandomNum, the blocks compare it to the number 1 in the if test. If the
value of RandomNum is 1, the app takes the first branch (then), and the phone number is
set to 111–1111. If the value is not 1, then the test is false, in which case the app takes
the second branch (else), and the phone number is set to 222–2222. The app makes

288 Chapter 18: Programming Your App to Make Decisions: Conditional Blocks

Chapter 18, Programming Your App to Make Decisions: Conditional Blocks

the phone call either way because the call to MakePhoneCall is below the entire if
else block.

Programming Conditions Within Conditions
Many decision situations have more than just two outcomes from which to choose.
For example, you might want to choose between more than two friends in your
Random Call program. To do this, you could place an else if prior to the original else
branch, as demonstrated in Figure 18-6.

Figure 18-7. if, else if and else provide three possible branches

With these blocks, if the first test is true, the app executes the first then-do branch
and calls the number 111–1111. If the first test is false, the else if branch is executed,
which immediately runs another test. So, if the first test (RandomNum=1) is false and the
second (RandomNum=2) is true, the second branch is executed and 222–2222 is called. If
both tests are false, else branch at the bottom is executed and the third number
(333–3333) is called.

Note that this modification only works because the to parameter of the random
integer call was changed to 3 so that 1, 2, or 3 is generated with equal likelihood.

289Programming Conditions Within Conditions

Programming Conditions Within Conditions

You can add as many else if branches as you’d like. You can also nest conditionals
within conditionals. When conditional tests are placed within branches of another
conditional test, we say they are nested. You can nest conditionals and other control
constructs such as for each loops to arbitrary levels in order to add complexity to your
app.

Programming Complex Conditions
Besides nesting conditionals, you can also specify single conditional tests that are
more complex than a simple equality test. For example, consider an app that vibrates
when your phone (and presumably you!) leave a building or some boundary. Such an
app might be used by a person on probation to warn him when he strays too far from
his legal boundaries. Parents might use it to monitor their children’s whereabouts. A
teacher might use it to automatically take roll (if all her students have an Android
phone!).

For this example, let’s ask this question: is the phone within the boundary of
Harney Science Center at the University of San Francisco? Such an app would require
a complex test consisting of four different questions:

• Is the phone’s latitude less than the maximum latitude (37.78034) of the
boundary?

• Is the phone’s longitude less than the maximum longitude (–122.45027) of the
boundary?

• Is the phone’s latitude more than the minimum latitude (37.78016) of the
boundary?

• Is the phone’s longitude more than the minimum longitude (–122.45059) of the
boundary?

You need the LocationSensor component for this example. You should be able to
follow along here even if you haven’t been exposed to LocationSensor, but you can
learn more about it in Chapter 23.

You can build complex tests by using the logical operators and, or, and not, which
you can find in the Logic drawer. In this case, you drag out an if block and some and
blocks, place one of the and blocks within the “test” socket of the if, and the others
within the first and block, as illustrated in Figure 18-7.

290 Chapter 18: Programming Your App to Make Decisions: Conditional Blocks

Chapter 18, Programming Your App to Make Decisions: Conditional Blocks

Figure 18-8. An if test can test many conditions using and, or, and other relational
blocks

You’d then drag out blocks for the first question and place them into the first
block’s “test” socket, as shown in Figure 18-8.

Figure 18-9. Blocks for the first test are placed into the and block

You can then fill the other sockets with the other tests and place the entire if
within a LocationSensor.LocationChanged event. You now have an event handler that
checks the boundary, as illustrated in Figure 18-9.

291Programming Complex Conditions

Programming Complex Conditions

Figure 18-10. This event handler checks the boundary each time the location changes

With these blocks, each time the LocationSensor gets a new reading and its
location is within the boundary, the phone vibrates.

OK, so far this is pretty cool, but now let’s try something even more complicated to
give you an idea of the full extent of the app’s decision-making powers. What if you
wanted the phone to vibrate only when the boundary was crossed from inside to
outside? Before moving ahead, think about how you might program such a condition.

Our solution is to define a variable withinBoundary that remembers whether the
previous sensor reading was within the boundary or outside of it, and then compares
that to each successive sensor reading. withinBoundary is an example of a Boolean
variable—instead of storing a number or text, it stores true or false. For this example,
you’d initialize it to false, as shown in Figure 18-10, meaning that the device is not
within USF’s Harney Science Center.

Figure 18-11. withinBoundary is initialized to false

The blocks can now be modified so that the withinBoundary variable is set on each
location change, and so that the phone vibrates only when it moves from inside to
outside the boundary. To put that in terms we can use for blocks, the phone should
vibrate when 1) the variable withinBoundary is true, meaning the previous reading
was inside the boundary, and 2) the new location sensor reading is outside the
boundary. Figure 18-11 shows the updated blocks.

292 Chapter 18: Programming Your App to Make Decisions: Conditional Blocks

Chapter 18, Programming Your App to Make Decisions: Conditional Blocks

Figure 18-12. These blocks cause the phone to vibrate only when it moves from within
the boundary to outside the boundary

Let’s examine these blocks more closely. When the LocationSensor gets a reading,
it first checks if the new reading is within the boundary. If it is, LocationSensor sets
the withinBoundary variable to true. Because we want the phone to vibrate only when
we are outside the boundary, no vibration takes place in this first branch.

If we get to the else, we know that the new reading is outside the boundary. At
that point, we need to check the previous reading: if we’re outside the boundary, we
want the phone to vibrate only if the previous reading was inside the boundary.
withinBoundary gives us the previous reading, so we can check that. If it is true, we
vibrate the phone.

There’s one more thing we need to do after we’ve confirmed that the phone has
moved from inside to outside the boundary—can you think of what it is? We also
need to reset withinBoundary to false so that the phone won’t vibrate again on the
next sensor reading.

One last note on Boolean variables: check out the two if tests in Figure 18-12. Are
they equivalent?

293Programming Complex Conditions

Programming Complex Conditions

Figure 18-13. Can you tell whether these two if tests are equivalent?

The answer is “yes!” The only difference is that the test on the right is actually the
more sophisticated way of asking the question. The test on the left compares the
value of a Boolean variable with true. If withinBoundary contains true, you compare
true to true, which is true. If the variable contains false, you compare false to true,
which is false. However, just testing the value of withinBoundary, as in the test on the
right, gives the same result and is easier to code.

Summary
Is your head spinning? That last behavior was quite complex! But, it’s the type of
decision making that sophisticated apps need to perform. If you build such behaviors
part by part (or branch by branch) and test as you go, you’ll find that specifying
complex logic—even, dare we say, artificial intelligence—is doable. It will make your
head hurt and exercise the logical side of your brain quite a bit, but it can also be lots
of fun.

294 Chapter 18: Programming Your App to Make Decisions: Conditional Blocks

Chapter 18, Programming Your App to Make Decisions: Conditional Blocks

	Programming Your App to Make Decisions: Conditional Blocks
	Testing Conditions with if and else if Blocks
	Programming an Either/Or Decision
	Programming Conditions Within Conditions
	Programming Complex Conditions
	Summary

