
Figure 14-1.

CHAPTER 14

Understanding an App’s Architecture

This chapter examines the structure of an app
from a programmer’s perspective. It begins with the
traditional analogy that an app is like a recipe and
then proceeds to reconceptualize an app as a set of
components that respond to events. The chapter
also examines how apps can ask questions, repeat,
remember, and talk to the Web, all of which will be
described in more detail in later chapters.

Many people can tell you what an app is from
a user’s perspective, but understanding what it is from a programmer’s perspective is
more complicated. Apps have an internal structure that you must understand in order
to create them effectively.

One way to describe an app’s internals is to break it into two parts, its components
and its behaviors. Roughly, these correspond to the two main windows you use in App
Inventor: you use the Component Designer to specify the objects (components) of
the app, and you use the Blocks Editor to program how the app responds to the user
and external events (the app’s behavior).

Figure 14-1 provides an overview of this app architecture. In this chapter, we’ll
explore this architecture in detail.

Figure 14-2. The internal architecture of an App Inventor app

Components
There are two main types of components in an app: visible and non-visible. The app’s
visible components are those that you can see when the app is launched—buttons,
text boxes, and labels. These are often referred to as the app’s user interface.

Non-visible components are those that you can’t see, so they’re not part of the user
interface. Instead, they provide access to the built-in functionality of the device; for
example, the Texting component sends and processes SMS texts, the LocationSensor
component determines the device’s location, and the TextToSpeech component talks.
The non-visible components are the technology within the device—little worker bees
that do jobs for your app.

Both visible and non-visible components are defined by a set of properties.
Properties are memory slots for storing information about the component. Visible
components like buttons and labels have properties such as Width, Height, and
Alignment, which together define how the component looks.

Component properties are like spreadsheet cells: you modify them in the
Component Designer to define the initial appearance of a component. You can also
change the values with blocks.

Behavior
App components are generally straightforward and easy to understand: a text box is
for entering information, a button is for clicking, and so on. An app’s behavior, on the
other hand, is conceptually difficult and often complex. The behavior defines how the

240 Chapter 14: Understanding an App’s Architecture

Chapter 14, Understanding an App’s Architecture

app should respond to events, both user initiated (e.g., a button click) and external
(e.g., an SMS text arriving to the phone). The difficulty of specifying such interactive
behavior is why programming is so challenging.

Fortunately, App Inventor provides a high-level blocks-based language for
specifying behaviors. The blocks make programming behaviors more like plugging
puzzle pieces together, as opposed to traditional text-based programming languages,
which involve learning and typing vast amounts of code. And App Inventor is
designed to make specifying event-response behaviors especially easy. The following
sections provide a model for understanding app behavior and how to specify it in
App Inventor.

An App as a Recipe
Traditionally, software has often been compared to a recipe. Like a recipe, a traditional
app follows a linear sequence of instructions that the computer should perform, such
as illustrated in Figure 14-2.

A typical app might start a bank transaction (A), perform some computations and
modify a customer’s account (B), and then print out the new balance on the screen
(C).

241An App as a Recipe

An App as a Recipe

Figure 14-3. Traditional software follows a linear sequence of instructions

An App as a Set of Event Handlers
The app as a recipe paradigm fit the early number-crunching computer well, but its
not a great fit for mobile phones, the Web, and in general most of the computing
done today. Most modern software doesn’t perform a bunch of instructions in a
predetermined order; instead, it reacts to events—most commonly, events initiated by
the app’s end user. For example, if the user taps a button, the app responds by
performing some operation (e.g., sending a text message). For touchscreen phones
and devices, the act of dragging your finger across the screen is another event. The

242 Chapter 14: Understanding an App’s Architecture

Chapter 14, Understanding an App’s Architecture

app might respond to that event by drawing a line from the point at which your
finger first contacts the screen to the point where you lifted it.

Modern apps are better conceptualized as event-response machines. The apps do
include recipes—sequences of instructions—but each recipe is only performed in
response to some event, as shown in Figure 14-3.

Figure 14-4. An app as multiple recipes hooked to events

As events occur, the app reacts by calling a sequence of functions. Functions are
things you can do to, or with, a component; these can be operations such as sending
an SMS text, or property-changing operations such as changing the text in a label of
the user interface. To call or invoke a function means to carry out the function—to
make it happen. We call an event and the set of functions performed in response to it
an event handler.

Many events are initiated by the end user, but some are not. An app can react to
events that happen within the phone, such as changes to its orientation sensor and
the clock (i.e., the passing of time), or it can respond to events that originate outside

243An App as a Set of Event Handlers

An App as a Set of Event Handlers

the phone, such as an incoming text or call from another phone, or data arriving from
the Web (see Figure 14-4).

Figure 14-5. An app can respond to both internal and external events

One reason why App Inventor programming is so intuitive is that it’s based directly
on this event-response paradigm; event handlers are primitives in the language (in
many languages, this is not the case). You begin defining a behavior by dragging out
an event block, which has the form, “When <event> do.” For example, consider an app,
SpeakIt, that responds to button clicks by speaking aloud the text the user has typed
in a textbox. This application could be programmed with a single event handler, as
demonstrated in Figure 14-5.

244 Chapter 14: Understanding an App’s Architecture

Chapter 14, Understanding an App’s Architecture

Figure 14-6. An event handler for a SpeakIt app

These blocks specify that when the user clicks the button named SpeakItButton,
the TextToSpeech component should speak the words the user typed in the text box
named TextBox1. The response is the call to the function TextToSpeech1.Speak. The
event is SpeakItButton.Click. The event handler includes all the blocks in Figure 14-5.

With App Inventor, all activity occurs in response to an event. Your app shouldn’t
contain blocks outside of an event’s when do block. For instance, the blocks in
Figure 14-6 accomplish nothing when floating alone.

Figure 14-7. Floating blocks won’t do anything outside an event handler

Event Types
The events that can trigger activity fall into the categories listed in Table 14-1.

Table 14-1. Events that can trigger activity

Event type Example

User-initiated event When the user clicks button1, do...

Initialization event When the app launches, do...

Timer event When 20 milliseconds passes, do...

Animation event When two objects collide, do...

External event When the phone receives a text, do...

USER-INITIATED EVENTS

User-initiated events are the most common type of event. With input forms, it is
typically the user tapping a button that triggers a response from the app. More
graphical apps respond to touches and drags.

245Event Types

Event Types

INITIALIZATION EVENTS

Sometimes, your app needs to perform certain functions immediately upon startup,
not in response to any end-user activity or other event. How does this fit into the
event-handling paradigm?

Event-handling languages such as App Inventor consider the app’s launch as an
event. If you want specific functions to be performed as the app opens, you drag out
a Screen1.Initialize event block and place the pertinent function call blocks within
it.

For instance, in the game MoleMash (Chapter 3), the MoveMole procedure is called
upon app startup (see Figure 14-7) to randomly place the mole.

Figure 14-8. Using a Screen1.Initialize event block to move the mole when the app
launches

TIMER EVENTS

Some activity in an app is triggered by the passing of time. You can think of an
animation as an object that moves when triggered by a timer event. App Inventor has
a Clock component that you can use to trigger timer events. For instance, if you
wanted a ball on the screen to move 10 pixels horizontally at a set time interval, your
blocks would look like Figure 14-8.

Figure 14-9. Using a timer event block to move a ball whenever Clock1.Timer fires

ANIMATION EVENTS

Activity involving graphical objects (sprites) within canvases will trigger events. So
you can program games and other interactive animations by specifying what should
occur on events such as an object reaching the edge of the canvas or two objects
colliding, as depicted in Figure 14-9. For more information, see Chapter 17.

246 Chapter 14: Understanding an App’s Architecture

Chapter 14, Understanding an App’s Architecture

Figure 14-10. When the FlyingSaucer sprite hits another object, play a sound

EXTERNAL EVENTS

When your phone receives location information from GPS satellites, an event is
triggered. Likewise, when your phone receives a text, an event is triggered
(Figure 14-10).

Figure 14-11. The Texting1.MessageReceived event is triggered whenever a text is
received

Such external inputs to the device are considered events, no different than the
user clicking a button.

Thus, every app you create will be a set of event handlers: one to initialize things,
some to respond to the end user’s input, some triggered by time, and some triggered
by external events. Your job is to conceptualize your app in this way and then design
the response to each event handler.

Event Handlers Can Ask Questions
The responses to events are not always linear recipes; they can ask questions and
repeat operations. “Asking questions” means to query the data the app has stored
and determine its course (branch) based on the answers. We say that such apps have
conditional branches. Figure 14-11 illustrates just such a branch.

In the diagram, when the event occurs, the app performs operation A and then
checks a condition. Function B1 is performed if the condition is true. If the condition is

247Event Handlers Can Ask Questions

Event Handlers Can Ask Questions

false, the app instead performs B2. In either case, the app continues on to perform
function C.

Conditional tests are questions such as “Has the score reached 100?” or “Did the
text I just received come from Joe?” Tests can also be more complex formulas
including multiple relational operators (less than, greater than, equal to) and logical
operators (and, or, not).

You specify conditional behaviors in App Inventor by using the if and if else
blocks. For instance, the block in Figure 14-12 would report “You Win!” if the player
scored 100 points.

Conditional blocks are discussed in detail in Chapter 18.

248 Chapter 14: Understanding an App’s Architecture

Chapter 14, Understanding an App’s Architecture

Figure 14-12. An event handler can “branch” based on the answer to a question

249Event Handlers Can Ask Questions

Event Handlers Can Ask Questions

Figure 14-13. Using an if block to report a win when the player reaches 100 points

Event Handlers Can Repeat Blocks
In addition to asking questions and branching based on the answer, a response to an
event can also repeat operations multiple times. App Inventor provides a number of
blocks for repeating, including the for each and the while do. Both enclose other
blocks. All the blocks within for each are performed once for each item in a list. For
instance, if you wanted to text the same message to a list of phone numbers, you
could use the blocks in Figure 14-13.

Figure 14-14. The blocks within the for each block are repeated for each item in the list
PhoneNumbers

The blocks within the for each block are repeated—in this case, three times,
because the list PhoneNumbers has three items. In this example, the message “Thinking
of you...” is sent to all three numbers. Repeating blocks are discussed in detail in
Chapter 20.

250 Chapter 14: Understanding an App’s Architecture

Chapter 14, Understanding an App’s Architecture

Event Handlers Can Remember Things
Because an event handler executes blocks, it often needs to keep track of information.
Information can be stored in memory slots called variables, which you define in the
Blocks Editor. Variables are like component properties, but they’re not associated with
any particular component. In a game app, for example, you can define a variable
called score, and your event handlers would modify its value when the user does
something accordingly. Variables store data temporarily while an app is running;
when you close the app, the data is lost and no longer available.

Sometimes, your app needs to remember things not just while it runs, but when it
is closed and then reopened. If you tracked a high score for the history of a game, for
example, you’d need to store this data so that it is available the next time someone
plays the game. Data that is retained even after an app is closed is called persistent
data, and it’s stored in some type of a database.

We’ll explore the use of both short-term memory (variables) and long-term
memory (database data) in Chapter 16 and Chapter 22, respectively.

Event Handlers Can Interact with the Web
Some apps use only the information within the phone or device. But many apps
communicate with the Web, either by displaying a web page within the app, or by
sending requests to web service APIs (application programming interfaces). Such apps
are said to be “web-enabled.”

Twitter is an example of a web service with which an App Inventor app can talk.
You can write apps that request and display your friends’ previous tweets and also
update your Twitter status. Apps that talk to more than one web service are called
mashups. We’ll explore web-enabled apps in Chapter 24.

Summary
An app creator must view his app both from an end-user perspective and from the
inside-out perspective of a programmer. With App Inventor, you design how an app
looks and you design its behavior—the set of event handlers that make an app
behave as you want. You build these event handlers by assembling and configuring
blocks representing events, functions, conditional branches, repeat loops, web calls,
database operations, and more, and then test your work by actually running the app
on your phone. After you write a few programs, the mapping between the internal
structure of an app and its physical manifestation becomes clear. When that happens,
you’re a programmer!

251Event Handlers Can Remember Things

Event Handlers Can Remember Things

	Understanding an App’s Architecture
	Components
	Behavior
	An App as a Recipe
	An App as a Set of Event Handlers
	Event Types
	Event Handlers Can Ask Questions
	Event Handlers Can Repeat Blocks
	Event Handlers Can Remember Things
	Event Handlers Can Interact with the Web
	Summary

