MakeQuiz and TakeQuiz

Figure 10-1.

You can customize the Presidents Quiz app in
Chapter 8 to build any quiz, but it is only the programmer
who can modify the questions and answers. There is no
way for parents, teachers, or other app users to create
their own quizzes or change the quiz questions (unless
they too want to learn how to use App Inventor!).

In this chapter, you'll build a MakeQuiz app that lets
a “teacher” create quizzes using an input form. The
quiz questions and answers will be stored in a web
database so that “students” can access a separate
TakeQuiz app and take the test. While building these
two apps, you'll make yet another significant
conceptual leap: learning how to create apps with
user-generated data that is shared across apps and

users.
Parents can create fun trivia apps for their
children during a long road trip, grade-school
teachers can build “Math Blaster” quizzes, and
Answer: enter an answer college students can build quizzes to help their
study groups prepare for a final. This chapter

Make Quiz

Question: enter a question

Submit) . . .

o builds on the Presidents Quiz in Chapter 8, so if
Quiz Questions and Answers you haven’t completed that app, you should do
[What is the capital of California? :Sacramento so before continuing on here.

[What is the capital of New York? :Albany

You'll design two apps, MakeQuiz for the
Figure 10-2. The MakeQuizapp in teacher (see Figure 10-1) and TakeQuiz for the
action . . .
student, which will appear similar to the
Presidents Quiz.
Here are the behaviors you'll code for the first app, MakeQuiz:

+ The user types questions and answers in an input form.
+ The question-answer pairs are displayed.

+ The quiz questions and answers are stored in a web database.

168 Chapter 10: MakeQuiz and TakeQuiz

The second app you'll create, TakeQuiz, will work similarly to the Presidents Quiz
app you've already built. In fact, you'll use the Presidents Quiz app as a starting point.
TakeQuiz will differ in that the questions asked will be those that were entered into
the database via MakeQuiz.

What You'll Learn

The Presidents Quiz was an example of an app with static data: no matter how many
times you take the quiz, the questions are always the same because they are
hardcoded into the app; that is, the questions and answers are part of the

blocks. News apps, blogs, and social networking apps such as Facebook and Twitter
work with dynamic data, meaning the data can change over time. Often, this dynamic
information is user generated—the app allows users to enter, modify, and share
information. With MakeQuiz and TakeQuiz, you'll learn how to build an app that
handles shared, user-generated data.

If you completed the Xylophone app (Chapter 9), you've already been introduced
to dynamic lists; in that app, the musical notes the user plays are recorded in lists.
Apps with such user-generated data are more complex, and the blocks are more
abstract because they don't rely on predefined, static data. You define list variables,
but you define them without specific items. As you program your app, you need to
envision the lists being populated with data provided by the end user.

This tutorial covers the following App Inventor concepts:

+ Input forms for allowing the user to enter information.
+ Using an indexed list along with for each to display items from multiple lists.

+ Persistent list data—MakeQuiz will save the quiz questions and answers in a
web database, and TakeQuiz will load them in from the same database.

+ Data sharing—you’ll store the data in a web database by using the TinyWebDB
component (instead of the TinyDB component used in previous chapters).

Getting Started

Connect to the App Inventor website and start a new project. Name it “MakeQuiz”
and set the screen’s title to “Make Quiz". Connect your app to your device or emulator
for live testing.

Chapter 10, MakeQuiz and TakeQuiz

Designing the Components 169

Designing the Components

Use the Component Designer to create the interface for MakeQuiz. When you finish, it
should look something like Figure 10-2 (there are also more detailed instructions after
the snapshot).

Viewer Components Properties

Display hidden components in Viewer a Sereen] Labell

e
SNomng exesl] BackgroundColor

Labell [wone
- LabelZ

[Question: e FontBold
Aneeer: Question Text

AnswerText Fonthalic

Submit
= SubmitBution

Quiz Questions and Answers Labeli3 FontSize

QuestionsAnswersLabel 1.0
TiryWebDB1 FontTypeface
default

Question

Texhlignrment

eft

TeaColar
|
Visible

showing | &
Rename Delete

Width

MNon-vigible components

Media
Tiny'WebDE1

Upload File ...

Figure 10-3. MakeQuiz in the Component Designer

You can build the user interface shown in Figure 10-2 by dragging out the
components listed in Table 10-1. Drag each component from the Palette into the
Viewer and name it as specified in the table. Note that you can leave the header label
names (Label1 - Label4) as their defaults (you won’t use them in the Blocks Editor
anyway).

Table 10-1. All the components for the MakeQuiz app

Component type Palette group | What you'll name it Purpose

TableArrangement | Layout TableArrangement1 gﬂngtrthe form, induding the question and
Label User Interface | Label1 The “Question:” prompt.

TextBox User Interface | QuestionText The user enters questions here.

Designing the Components

170 Chapter 10: MakeQuiz and TakeQuiz

Component type Palette group | What you'll name it Purpose

Label User Interface | Label2 The "Answer:” prompt.

TextBox User Interface | AnswerText The user enters answers here.
Button User Interface | SubmitButton The user clicks this to submit a QA pair.
Label User Interface | Label3 Display “Quiz Questions and Answers.”
Label User Interface | QuestionsAnswersLabel | Display previously entered QA pairs.
TinyWebDB Storage TinyWebDB1 Web storage for QA pairs.

Set the properties of the components in the following way:

1. Set the Text of Label1 to “Question”, the Text of Label2 to “Answer”, and the

text of Label3 to “Quiz Questions and Answers”.
2. Set the FontSize of Label3 to 18 and check the FontBold box.

3. Set the Hint of QuestionText to “Enter a question” and the Hint of AnswerText

to “Enter an answer”.
4. Set the Text of SubmitButton to “Submit”.
5. Set the Text of QuestionsAnswersLabel to “Quiz Questions and Answers”.

6. Move the QuestionText, AnswerText, and their associated labels into

TableArrangementl.

If you look at the properties for TinyWebDB, you'll notice that it has a property
ServiceURL (see Figure 10-3). This property specifies a web database service, specially
configured to work with the TinyWebDB component, where your shared data will be
stored. By default, the web service it refers to is one set up by the MIT App Inventor
team at http://appinvtinywebdb.appspot.com. You'll use this default service in this
tutorial as you work; however, it is important to know that anyone using App Inventor
will be storing information to this same web service, and that the data your app puts
there will be seen by all, and might even be overwritten by someone.

The default service is for testing only. It is fairly easy (and free!) to configure your
own such service, which you'll want to do if you build an app that will be deployed
with real users. For now, continue on and complete this tutorial, but when you're
ready the instructions for setting up your own web service are at “TinyWebDB and
TinyWebDB-Compliant APIs” on page 368.

Chapter 10, MakeQuiz and TakeQuiz

http://appinvtinywebdb.appspot.com

Adding Behaviors to the Components 171

Froperties

TinyWebDB1

ServicelURL
http: f fappinvtinywe

Figure 10-4. With TinyWebDB.ServiceURL, you can specify the URL of a web database
you set up

Adding Behaviors to the Components

As with the Presidents Quiz app, you'll first define some global variables for the
QuestionList and AnswerList, but this time you won't provide fixed questions and
answers.

CREATING EMPTY QUESTION AND ANSWER LISTS

The blocks for the lists should look as shown in Figure 10-4.

[initialize global (FT 1" Jto | | create empty list
[initialize global ({7 " Jto | | create empty list

Figure 10-5. The lists for MakeQuiz begin empty

The lists are defined with the create empty list block, instead of the make a
list block. This is because with the MakeQuiz and TakeQuiz apps, all data will be
created by the app user (it is dynamic, user-generated data).

RECORDING THE USER'S ENTRIES

The first behavior you'll build is for handling the user’s input. Specifically, when the
user enters a question and answer and clicks Submit, you'll use add items to list
blocks to update the QuestionList and AnswerList. The blocks should appear as
illustrated in Figure 10-5.

Adding Behaviors to the Components

172 Chapter 10: MakeQuiz and TakeQuiz

The user clicking on submit
triggers the processing,

Take user input from textboxes
and add to lists.

{1 global Questiontist - |
item l.
(o | additems folist list | get FETILTITI 8

Iltaﬂl'—-

display as two lists separated by
a colon (for now)

Figure 10-6. Adding new entries to the lists

How the blocks work

The add items to list block appends each item to the end of a list. As shown in
Figure 10-5, the app takes the text the user has entered in the QuestionText and
AnswerText text boxes and appends each to the corresponding list.

The add items to list blocks update the QuestionList and AnswerList variables,
but these changes are not yet shown to the user. The third row of blocks displays
these lists by concatenating them (joining them) with a colon inserted between. By
default, App Inventor displays lists with surrounding parentheses and spaces
between items: for example, “(item1 item2 item3)." Of course, this is not the ideal way
to display the lists, but it will allow you to test the app’s behavior for now. Later, you'll
create a more sophisticated method of displaying the lists that shows each question-
answer pair on a separate line.

BLANKING OUT THE QUESTION AND ANSWER

Recall from the Presidents Quiz app that when you moved on to the next question in
the list, you needed to blank out the user’s answer from the previous question. In this
app, when a user submits a question-answer pair, you'll want to clear the
QuestionText and AnswerText text boxes so that they're ready for a new entry instead
of showing the previous one. The blocks should appear as those shown in Figure 10-6.

Chapter 10, MakeQuiz and TakeQuiz

Adding Behaviors to the Components 173

@1\ SubmitBution - e
3@ LTS NPT global QuestionList ~ |
item ':-

> add items to list list "get
ftem | -

- - global AnswerlList ~

[Biank out the two input text boxes]

Figure 10-7. Blanking out the question and answer text boxes after submission

Test your app Test the behavior by entering a couple of
question-answer pairs. As you add them, do they appear
below the form in the QuestionsAnswersLabel?

How the blocks work

When the user submits a new question and answer, they are added to their respective
lists and displayed. At that point, the text in the QuestionText and AnswerText is
blanked out with empty text blocks.

DISPLAYING QUESTION-ANSWER PAIRS ON MULTIPLE LINES

In the app you've built so far, the question and answer lists are displayed separately
and using the default list display format for App Inventor. So if you were making a
quiz on state capitals and had entered two pairs of questions and answers, it might
appear as:

(What is the capital of California? What is the capital of New York?: Sacramento Albany)

This is obviously not an ideal user interface for the quiz designer. A better display
would show each question along with its corresponding answer, with one question-
answer pair per ling, like this:

What is the capital of California?: Sacramento

What is the capital of New York?: Albany

The technique for displaying a single list with each item on a separate line is
described in Chapter 20—you might want to read that chapter before going on.

The task here is a bit more complicated because you're dealing with two lists.
Because of its complexity, you'll put the blocks for displaying the data in a procedure

Adding Behaviors to the Components

174 Chapter 10: MakeQuiz and TakeQuiz

named displayQAs, and call that procedure from the SubmitButton.Click event
handler.
To display question-answer pairs on separate lines, you'll need to do the following:

+ Use a for each block to iterate through each question in the QuestionList.

+ Use a variable answerIndex so that you can grab each answer as you iterate

through the questions.

+ Use join to build a text object with each question and answer pair, and a

newline character (\n) separating each pair.

The blocks should appear as illustrated in Figure 10-7.

Y ispiayQas |
L =W QuestionsAnswersLabel ~ JI Text ~ Ik
| global answerindex ~ | +1 (4 1]

\[+J4-=14)1 question |1 SIESVE Y global QuestionList ~
L ST global answer ~ Ros @)1= o - ST global AnswerList
=L a B E E global answerlndex ~
L global answerindex ~ REREREINERY oiobal answerindex ~ MRS 1)

-2 N QuestionsAnswersLabel ~ . to | (e L QuestionsAnswersLabel ~ |7

-] question ~ |

4" global answer - |

Figure 10-8. The displayQAs procedure

How the blocks work

The displayQAs procedure encapsulates all of the blocks for displaying the data.

By using a procedure, you won't have to copy the blocks needed to display the list
more than once in the app—you can just call displayQAs when you need to display
the lists.

The for each only allows you to iterate through a single list. In this case, there are
two lists, QuestionList and AnswerList. The for each is used to iterate through the
QuestionList, but you need to select an answer, as well, as you proceed through the
questions. To accomplish this, you use an index variable, as was done with the
currentQuestionIndex in the Presidents Quiz tutorial in Chapter 8. In this case, the
index variable, answerIndex, is used to track the position in the AnswerList as the for
each goes through the QuestionList.

Chapter 10, MakeQuiz and TakeQuiz

Adding Behaviors to the Components 175

answerIndex is set to 1 before the for each begins. Within the for each,
answerIndex is used to select the current answer from the AnswerlList, and then it is
incremented. On each iteration of the for each, the current question and answer are
concatenated to the end of the QuestionsAnswersLabel.Text property, with a colon
between them.

CALLING THE DISPLAYQAS PROCEDURE

You now have a procedure for displaying the question-answer pairs, but it won't help
unless you call it when you need it. Modify the SubmitButton.Click event handler by
calling displayQAs instead of displaying the lists, as was done previously. The updated
blocks should appear as shown in Figure 10-8.

The call to displayQis replaces
the blocks below
¥

O GuestorsAnsworsabol W Tod MO T 1 oicbal GuostonLst -

B0 1 global AnswerList - |

Figure 10-9. Calling the displayQAs procedure to replace the blocks shown to the right

Test your app Test the behavior by entering a couple of
_ question-answer pairs. As you add them, do they appear on
/ separate lines in the QuestionsAnswersLabel?

__.I'

SAVING THE QAS PERSISTENTLY ON THE WEB

So far, you've created an app that places the entered questions and answers into a list.
But what happens if the quiz maker closes the app? If you've completed the No
Texting While Driving app (Chapter 4) or the Android, Where's My Car? app (Chapter 7),
you know that if you don't store the data in a database, it won't be there when the
user exits and restarts the app. Storing the data persistently will allow the quiz maker
to view or edit the latest update of the quiz each time the app is started. Persistent
storage is also necessary because the TakeQuiz app needs access to the data, as well.

You're already familiar with using the TinyDB component to store and retrieve data
in a database. But in this case, you'll use the TinyWebDB component, instead. Whereas
TinyDB stores information directly on a phone, TinyWebDB stores data in databases
that reside on the Web.

What about your app design would merit using an online database instead of one
stored on a person’s phone? The key issue here is that you're building two apps that

Adding Behaviors to the Components

176 Chapter 10: MakeQuiz and TakeQuiz

both need access to the same data—if the quiz maker stores the questions and
answers on her phone, the quiz takers won't have any way of getting to the data for
their quiz! Because TinyWebDB stores data on the Web, the quiz taker can access the
quiz questions and answers on a different device than the quiz maker’s. (Online data
storage is often referred to as the cloud.)

Here's the general scheme for making list data (such as the questions and answers
for our app) persistent:

« Store alist to the database each time a new item is added to it.

+ When the app launches, load the list from the database into a variable.

Start by storing the QuestionList and AnswerList in the database each time the
user enters a new pair.

How the blocks work

The TinyWebDB1.StoreValue blocks store data in a web database. StoreValue has two
arguments: the tag that identifies the data, and the value that is the actual data you
want to store. Figure 10-9 shows that the QuestionList is stored with a tag of
“questions,” whereas the AnswerlList is stored with a tag of “answers.”

) when Click

2T Y Giobal QuestionList +
. i QuestionText - | Text -
F"'aﬁmww 141 global AnswerList -
item

Copy the QuestionList
data to the database
(and AnswerlList below)

Figure 10-10. Storing the questions and answers in the database

For your app, you should use tags that are more distinctive than “questions” and
“answers” (e.g., “DavesQuestions” and “DavesAnswers”). This is important because, at

Chapter 10, MakeQuiz and TakeQuiz

Adding Behaviors to the Components 177

least initially, you're using the default web database service for App Inventor, which
means that others can overwrite your questions and answers, including other people
following this tutorial.

Test your app Testing this part of the app is different from tests
you've performed previously because your app is now affecting
A another entity, the default TinyDBWeb service. Run the app,

' enter a question and answer, and then open a browser
window to the default web service at http://
appinvtinywebdb.appspot.com. Then click “get value” and
enter one of your tags (in this sample, “questions” or
“answers”). If things are working correctly, your question and
answer lists should appear.

As mentioned earlier, the default web service is shared among programmers and
apps, so itis intended only for testing. When you're ready to deploy your app with real
users, you'll want to set up your own private database service. Fortunately, doing so is
straightforward and requires no programming (see “TinyWebDB and TinyWebDB-
Compliant APIs” on page 368).

LOADING DATA FROM THE DATABASE

One reason we need to store the questions and answers in a database is to make it
possible for the person creating the quiz to close the app and relaunch it at a later
time without losing the questions and answers previously typed. (We also do it so
that the quiz taker can access the questions, but we'll cover that later.) Let's program
the blocks for loading the lists back into the app from the web database each time
the app is restarted.

As we've covered in earlier chapters, to specify what should happen when an app
launches, you program the Screen.Initialize event handler. In this case, the app
needs to request two lists from the TinyWebDB web database—the questions and the
answers—so the Screen1.Initialize will make two calls to TinyWebDB.GetValue. The
blocks should appear as depicted in Figure 10-10.

Adding Behaviors to the Components

http://appinvtinywebdb.appspot.com
http://appinvtinywebdb.appspot.com

178 Chapter 10: MakeQuiz and TakeQuiz

when Initialize

do call GetValue
tag |

call GetValue

when GotValue

[, length of list list | get
EX2 | lengthof list list | get

Figure 10-11. Requesting the lists from the database when the app opens and
processing when lists arrive

How the blocks work

The TinyWebDB.GetValue blocks in Figure 10-10 work differently than TinyDB.GetValue,
which returns a value immediately. TinyWebDB.GetValue only requests the data from
the web database; it doesn’t immediately receive a value. Instead, when the data
arrives from the web database, a TinyWebDB. GotValue event is triggered. You must
also program that event handler to process the data that is returned.

When the TinyWebDB.GotValue event occurs, the data requested is contained in an
argument named valueFromWebDB. The tag you requested is contained in the
argument tagFromWebDB.

In this app, because two different requests are made for the questions and
answers, GotValue will be triggered twice. To avoid putting questions in your
AnswerList, or vice versa, your app needs to check the tag to see which request has
arrived and then put the value returned from the database into the corresponding list

(QuestionList or AnswerlList).

Chapter 10, MakeQuiz and TakeQuiz

The Complete App: MakeQuiz 179

In Screen.Initialize, the app calls TinyWebDB1.GetValue twice: once to request
the stored QuestionList, and once to request the stored AnswerList. When the data
arrives from the web database from either request, the TinyWebDB1.GotValue event is
triggered.

The valueFromWebDB argument of GotValue holds the data returned from the
database request. You need the outer if block in the event handler because the
database will return an empty text (“”) in valueFromWebDB if it's the first time the app
has been used and there aren’t yet questions and answers. By asking if the
valueFromWebDB is a list?, you're making sure there is some data actually returned.
If there isn't any data, you'll bypass the blocks for processing it.

If datais returned (is a list? is true), the blocks go on to check which request has
arrived. The tag identifying the data is in tagFromWebDB: it will be either “questions” or
“answers.” If the tag is “questions,” the valueFromWebDB is put into the variable
QuestionList. Otherwise (else), it is placed in the AnswerList. (If you used tags other
than “questions” and “answers,” check for those, instead.)

You only want to display the lists after both have arrived (Gotvalue has been
triggered twice). Can you think of how you'd know for sure that you have both lists
loaded in from the database? The blocks shown use an if test to check whether the
lengths of the lists are the same, as this can only be true if both lists have been
returned. If they are, the handy displayQAs procedure you wrote earlier is called to
display the loaded data.

The Complete App: MakeQuiz

Figure 10-11 shows the blocks for the entire MakeQuiz app.

TakeQuiz: An App for Taking the Quiz in the
DataQase PP 5 Q

You now have a MakeQuiz app that will store a quiz in a web database. Building
TakeQuiz, the app that dynamically loads the quiz, is simpler. You can build it with a
few modifications to the Presidents Quiz you completed in Chapter 8 (if you have not
completed that tutorial, do so now before continuing).

Begin by opening your Presidents Quiz app in App Inventor, choosing Save As, and
naming the new project “TakeQuiz". This will leave your Presidents Quiz app
unmodified but now you can use its blocks as the basis for TakeQuiz.

The Complete App: MakeQuiz

180 Chapter 10: MakeQuiz and TakeQuiz

initialize global)to ©| create empty list

when [EEC0RS .Initialize
L R@NCETN TinyWebDB1 v el=VETE

tag

initialize global | to @ | create empty list
initialize global [to | EY =T TinyWebDB1 v Je=AVETE)
tag
initialize global tol @
? -1 SubmitButton v Flel ¢

do | 1o/ (?) add items to list list

item
© add items to list list

L)
2NN TinyWebDB1 v RSGICETTE
SN Guestions |
T A=Y global Questionist +)

Ll TinyWebDB1 v IS VE TS

tag

valueToStore | get

else

g) 1 length of list list | get I EeICS i % EED P length of list list
then call
—

1= d global AnswerList v

set to
>} foreach [Jin list

0 BEEE global answer v B 7 select list item list

index | get

)81 giobal answerindex » AL MEREINEY o/obal answerindex + JIRA 1)

get

Figure 10-12. The blocks for MakeQuiz

Next, make the following changes in the Designer:

1. This version will not display images with each question, so first remove the
references to images from the TakeQuiz app. In the Component Designer,

Chapter 10, MakeQuiz and TakeQuiz

TakeQuiz: An App for Taking the Quiz in the Database 181

choose each image from the Media palette and delete it. Then, delete the Imagel

component, which will remove all references to it from the Blocks Editor.

2. Because TakeQuiz will work with database data that resides on the Web, drag a
TinyWebDB component into the app.

3. Because you don’t want the user to answer or click the NextButton until the
questions are loaded, uncheck the Enabled property of the AnswerButton and
NextButton.

Now, modify the blocks so that the quiz given to the user is loaded from the
database. First, because there are no fixed questions and answers, remove all the
actual question and answer text blocks from the make a list blocks within the
QuestionList and AnswerList. The resulting blocks should appear as shown in
Figure 10-12.

initialize global (" " I Jto | |o| create empty list
initialize global (""" Jto | |o| create empty list

Figure 10-13. The question and answer lists now start empty

You can also completely delete the PictureList; this app won't deal with images.
Now, modify your Screen1.Initialize so that it calls TinyWebDB. GetValue twice to
load the lists, just as you did in MakeQuiz. The blocks should look as they do in
Figure 10-13.

when Initialize
do cal GetValue
tag |

call -GetValue

—

Figure 10-14. Requesting the questions and answers from the web database

Finally, drag out a TinyWebDB. GotValue event handler. This event handler should
look similar to the one used in MakeQuiz, but here you want to show only the first
question and none of the answers. Try making these changes yourself first, and then
take a look at the blocks in Figure 10-14 to see if they match your solution.

TakeQuiz: An App for Taking the Quiz in the Database

182 Chapter 10: MakeQuiz and TakeQuiz

when lebDB1 ~ el k1]

Show the first question ence the
question list is loaded.

“"1 global questionList - | I

_ Enable the buttens once
the answers have arrived
from the web.

Figure 10-15. GotValue handles the data that arrives from the Web

HOW THE BLOCKS WORK

When the app starts, Screenl.Initialize is triggered and the app requests the
questions and answers from the web database. When each request arrives, the
TinyWebDB.GotValue event handler is triggered. The app first checks if there is indeed
data in valueFromWebDB using is a list? If it finds data, the app asks which request
has come in, using tagFromWebDB, and places the valueFromhWebDB into the appropriate
list. If the QuestionList is being loaded, the first question is selected from
QuestionList and displayed. If the AnswerlList is being loaded, the AnswerButton and
NextButton are enabled so that the user can begin taking the test.

These are all the changes you need for TakeQuiz. If you've added some questions
and answers with MakeQuiz and you run TakeQuiz, the questions that appear should
be the ones you input.

The Complete App: TakeQuiz

Figure 10-15 shows the blocks for the entire TakeQuiz app.

Chapter 10, MakeQuiz and TakeQuiz

Variations 183

initialize global) to @ create empty list when m .Initialize

initialize global (2, to [19 create empty list o8 call QIVIETRERED Getvalue
_ . tag

initialize global ("= to | EY call ETIEEEED Getvalue

N TinywebDE1 v e - 129

set © | get

’) select list item list get

= NextButton « =1
SHRORL giobal index - LSRRI o/obal index + RSN 1

[ORI giobal index + J[> v 31 11 - ("1 global QuestionList
[giobal index + 1
S

P - LacE HEEGEE global QuestionList v |
[Y global index v

_AnswerText v I Text v
select list item list | get
index |7 get

Figure 10-16. The final blocks for TakeQuiz

Variations

After you get MakeQuiz and TakeQuiz working, you might want to explore some of
the following variations:

+ Allow the quiz maker to specify an image for each question. This is a little
complicated because TinyWebDB doesn’t allow you to store images. Therefore,
the images will need to be URLSs to pictures on the Web, and the quiz maker
will need to enter these URLSs as a third item in the MakeQuiz form. Note that
you can set the Picture property of an Image component to a URL.

Variations

184 Chapter 10: MakeQuiz and TakeQuiz

+ Allow the quiz maker to delete items from the questions and answers. You can
let the user choose a question by using the ListPicker component, and you can
remove an item with the remove 1ist item block (remember to remove from
both lists and update the database). For help with ListPicker and list deletion,
see Chapter 19.

+ Let the quiz maker name the quiz. You'll need to store the quiz name under a
different tag in the database, and you'll need to load the name along with the
quiz in TakeQuiz. After you've loaded the name, use it to set the Screen.Title
property so that it appears when the user takes a quiz.

+ Allow multiple named quizzes to be created. You'll need a list of quizzes, and
you can use each quiz name as (part of) the tag for storing its questions and
answers.

Summary

Here are some of the concepts we covered in this chapter:

+ Dynamic data is information input by the app’s user or loaded in from a
database. A program that works with dynamic data is more abstract. For more
information, see Chapter 19.

* You can store data persistently in a web database with the TinyWebDB
component.

+ You retrieve data from a TinyWebDB database by requesting it with
TinyWebDB.GetValue. When the web database returns the data, the
TinyWebDB.GotValue event is triggered. In the TinyWebDB.GotValue event
handler, you can put the data in a list or process it in some way.

+ TinyWebDB data can be shared among multiple phones and apps. For more
information on (web) databases, see Chapter 22.

Chapter 10, MakeQuiz and TakeQuiz

	MakeQuiz and TakeQuiz
	What You’ll Learn
	Getting Started
	Designing the Components
	Adding Behaviors to the Components
	The Complete App: MakeQuiz
	TakeQuiz: An App for Taking the Quiz in the Database
	The Complete App: TakeQuiz
	Variations
	Summary

