
CHAPTER 11

Broadcast Hub

FrontlineSMS (http://www.frontlinesms.com) is
a software tool used in developing countries to
monitor elections, broadcast weather changes,
and connect people who don’t have access to
the Web but do have phones and mobile con-
nectivity. It is the brainchild of Ken Banks, who
has probably done more to help people using
mobile technology than any other human
alive.

FrontlineSMS runs on a computer with a phone
plugged into it. The computer and plugged-in
phone serve as a hub for SMS (short message
service) text communication within a group.
People who don’t have Internet access can send
in a special code to join the group, after which
they receive broadcast messages from the hub.
For places with no Internet access, the broad-
cast hub can serve as a vital connection to the
outside world.

With App Inventor, you can create your own
SMS-processing app. The cool thing is that the people who use your app don’t need to
have an Android phone. Your app will run on an Android device, but your app users can
interface with it through SMS using any phone, smart or not so smart. Your app will still
have a graphical user interface (GUI) as well, but that GUI will be reserved for the admin-
istrator who monitors the activity via the Android app you’re about to build.

In this chapter, you’ll create a hub that works similarly to FrontlineSMS but runs on
an Android phone. Having the hub itself on a mobile device means the administrator
can be on the move, something that is especially important in controversial situations
like election monitoring and healthcare negotiations.

170  Chapter 11:  Broadcast Hub

Your broadcast hub will be for the fictitious FlashMob Dance Team (FMDT), a group
that uses the hub to organize flash mob dances anywhere, anytime. People will reg-
ister with the group by texting “joinFMDT” to the hub, and anyone who is registered
can broadcast messages to everyone else in the group.

Your app will process received text messages in the following manner:

1. If the text message is sent from someone not yet in the broadcast list, the app
responds with a text that invites him to join the broadcast list and lets him know
the code.

2. If the text message “joinFMDT” is received, the app adds the sender to the broad-
cast list.

3. If the text message is sent from a number already in the broadcast list, the mes-
sage is broadcast to all numbers in the list.

You’ll build this app one piece of functionality at a time, starting with the first autore-
sponse message that invites people to join. By the time you complete this app, you’ll
have a pretty good idea of how to write apps utilizing SMS text as the user interface.

What You’ll Learn
The tutorial covers the following App Inventor concepts, some of which you’re likely
familiar with by now:

• The Texting component for sending texts and processing received texts.

• List variables—in this case, to keep track of the list of phone numbers.

• The foreach block to allow an app to repeat operations on a list of data. In this
case, you’ll use foreach to broadcast messages to the list of phone numbers.

• The TinyDB component to store data persistently. This means that if you close
the app and then relaunch it, the list of phone numbers will still be there.

Getting Started
You’ll need a phone that can accept and send SMS texts to test this app, as the
emulator that comes with App Inventor isn’t set up for this. You’ll also need to recruit
some friends to send you texts in order to fully test the app.

Connect to the App Inventor website and start a new project. Name it “BroadcastHub”
and also set the screen’s title to “Broadcast Hub”. Open the Blocks Editor and connect to
the phone.

Designing the Components  171 

Designing the Components
Broadcast Hub facilitates communication between mobile phones. Those phones do
not need to have the app installed, or even be smartphones. So, in this case, you’re
not building an interface for your app’s users, but instead for the group administrator.

The user interface for the administrator is simple: it displays the current broadcast
list—that is, the list of phone numbers that have registered for the service—and all of
the texts it receives and broadcasts.

To build the interface, add the components listed in Table 11-1.

Table 11-1. User interface components for Broadcast Hub

Component type Palette group What you’ll name it Purpose

Label Basic Label1 This is the header above the list of phone numbers.

Label Basic BroadcastListLabel Display the phone numbers that are registered.

Label Basic Label2 This is the header above the log information.

Label Basic LogLabel Display a log of the texts received and broadcast.

Texting Social Texting1 Process the texts.

TinyDB Basic TinyDB1 Store the list of registered phone numbers.

As you add the components, set the following properties:

1. Set the Width of each label to “Fill parent” so that it spans the phone horizontally.

2. Set the FontSize of the header labels (Label1 and Label2) to 18 and check their
FontBold boxes.

3. Set the Height of BroadcastListLabel and LogLabel to 200 pixels. They’ll show
multiple lines.

4. Set the Text property of BroadcastListLabel to “Broadcast List…”.

5. Set the Text property of LogLabel to blank.

Figure 11-1 shows the app layout in the Component Designer.

172  Chapter 11:  Broadcast Hub

Figure 11-1. Broadcast Hub in the Component Designer

Adding Behaviors to the Components
The activity for Broadcast Hub is not triggered by the user entering information or
clicking a button, but rather by texts coming in from other phones. To process these
texts and store the phone numbers that sent them in a list, you’ll need the following
behaviors:

• When the text message is sent from someone not already in the broadcast list,
the app responds with a text that invites the sender to join.

• When the text message “joinFMDT” is received, register the sender as part of the
broadcast list.

• When the text message is sent from a number already in the broadcast list, the
message is broadcast to all numbers in the list.

Let’s start by creating the first behavior: when you receive a text, send a message
back to the sender inviting her to register by texting “joinFMDT” back to you. You’ll
need the blocks listed in Table 11-2.

Adding Behaviors to the Components  173 

Table 11-2. Blocks for adding the functionality to invite people to the group via text

Block type Drawer Purpose

Texting1.Message
Received

Texting1 Triggered when the phone receives a text.

set Texting1.Phone
Number to

Texting1 Set the number for the return text.

value number My Definitions The argument of MessageReceived. This is the phone number of 
the sender.

set Texting1.Message Texting1 Set the invite message to send.

text ("To join this broadcast 
list, text 'joinFMDT' to this 
number")

Text The invite message.

Texting1.SendMessage Texting1 Send it!

How the Blocks Work
Based on the work you did in the No Texting While Driving app in Chapter 4, these
blocks should look familiar. Texting1.MessageReceived is triggered when the
phone receives any text message. As shown in Figure 11-2, the blocks within the
event handler set the PhoneNumber and Message of the Texting1 component and
then send the message.

Figure 11-2. Sending the invite message back after receiving a text

Test your app. You’ll need a second phone to test this behavior;
you don’t want to text yourself, as it could loop forever! If you don’t
have another phone, you can register with Google Voice or a similar
service and send SMS texts from that service to your phone. From
the second phone, send the text “hello” to the phone running the
app. The second phone should then receive a text that invites it to
join the group.

174  Chapter 11:  Broadcast Hub

Adding Someone to the Broadcast List
Now let’s create the blocks for the second behavior: when the text message “joinFMDT”
is received, add the sender to the broadcast list. First, you’ll need to define a list vari-
able, BroadcastList, to store the phone numbers that register. From Definitions, drag
out a def var block and name it “BroadcastList”. Initialize it to an empty list with a
make a list block from the Lists drawer, as shown in Figure 11-3 (we’ll add the func-
tionality to build this list shortly).

Figure 11-3. The BroadcastList variable for storing the list of registered numbers

Next, modify the Texting1.MessageReceived event handler so that it adds the
sender’s phone number to the BroadcastList if the message received is “joinFMDT.”
You’ll need an ifelse block—which you used in MakeQuiz in Chapter 10—within your
event handler, and an add item to list block to add the new number to the list. The
full set of blocks you’ll need is listed in Table 11-3. After you add the number to the
list, display the new list in the BroadcastListLabel.

Table 11-3. Blocks for checking a text message and adding the sender to the broadcast list

 Block type Drawer Purpose

ifelse Control Depending on the message received, do different things.

= Math Determine whether messageText is equal to “joinFMDT.”

value messageText My Definitions Plug this into the = block.

text ("joinFMDT") Text Plug this into the = block.

add items to list Lists Add the sender’s number to BroadcastList.

global BroadcastList My Definitions The list.

value number My Definitions Plug this in as an item of add items to list.

set BroadcastList
Label.Text to

BroadcastListLabel Display the new list.

global BroadcastList My Definitions Plug this in to set the BroadcastListLabel.Text to block.

set Texting1.Message
to

Texting1 Prepare Texting1 to send a message back to the sender.

text ("Congrats, you…") Text Congratulate the sender for joining the group.

How the blocks work
The first row of blocks shown in Figure 11-4 sets Texting1.PhoneNumber to the
phone number of the message that was just received; we know we’re going to
respond to the sender, so this sets that up. The app then asks if the messageText
was the special code, “joinFMDT.” If so, the sender’s phone number is added to the

Adding Behaviors to the Components  175 

BroadcastList, and a congratulations message is sent. If the messageText is some-
thing other than “joinFMDT,” the reply message repeats the invitation message. After
the ifelse block, the reply message is sent (bottom row of the blocks).

Figure 11-4. If the incoming message is “joinFMDT”, add the sender to BroadcastList

Test your app. From a second phone, send the text message
“joinFMDT” to the phone running the app. You should see the
phone number listed in the user interface under “Registered Phone
Numbers.” The second phone should also receive the Congrats mes-
sage. Try sending a message other than “joinFMDT” as well to check
if the invite message is still sent correctly.

Broadcasting Messages
Next, you’ll add the behavior so that the app broadcasts received messages to the
numbers in BroadcastList, but only if the message arrives from a number already
stored in that list. This additional complexity will require more control blocks, includ-
ing another ifelse and a foreach. You’ll need an additional ifelse block to check if the
number is in the list, and a foreach block to broadcast the message to each number

176  Chapter 11:  Broadcast Hub

in the list. You’ll also need to move the ifelse blocks from the previous behavior and
slot them into the “else” part of the new ifelse. All the additional blocks you’ll need
are listed in Table 11-4.

Table 11-4. Blocks for checking if the sender is in the group already

Block type Drawer Purpose

ifelse Control Depending on whether the sender is already in the list, do differ-
ent things.

is in list? Lists Check to see if something is in a list.

global BroadcastList My Definitions Plug this into the “list” slot of is in list?.

value number My Definitions Plug this into the “thing” slot of is in list?.

foreach Control Repeatedly send out a message to all members in the list.

global BroadcastList My Definitions Plug this into the “list” slot of foreach.

set Texting1.Message
to

Texting1 Set the message.

value messageText My Definitions The message that was received and will be broadcast.

set Texting1.Phone-
Number to

Texting1 Set the phone number.

value var My Definitions Hold the current item of the BroadcastList; it’s a (phone) 
number.

How the blocks work
The app has become complex enough that it requires a nested ifelse block, as shown
in Figure 11-5. A nested ifelse block is one slotted within the “if” or “else” part of
another, outer ifelse. In this case, the outer ifelse branch checks whether the phone
number of the received message is already in the list. If it is, the message is relayed to
everyone in the list. If the number is not in the list, then the nested test is performed:
the blocks check if the messageText is equal to “joinFMDT” and branches one of two
ways based on the answer.

In general, if and ifelse blocks can be nested to arbitrary levels, giving you the power
to program increasingly complex behaviors (see Chapter 18 for more information on
conditional blocks).

The message is broadcast using a foreach (within the outer then clause). The
foreach loops through and sends the message to each item in the BroadcastList.
As the foreach repeats, each succeeding phone number from the BroadcastList is
stored in var (var is a variable placeholder for the current item being processed in
the foreach). The blocks within the foreach set Texting.PhoneNumber to the current
item var and then send the message. For more information on how foreach works,
see Chapter 20.

Adding Behaviors to the Components  177 

Figure 11-5. Now we check if the sender is already in the group and broadcast the message if so

Test your app. First, have two different phones register by texting
“joinFMDT” to the phone running the app. Then, text another mes-
sage from one of the phones. Both phones should receive the text
(including the one that sent it).

178  Chapter 11:  Broadcast Hub

Cleaning Up Your List Display
The app can now broadcast messages, but the user interface for the app admin-
istrator needs some work. First, the list of phone numbers is displayed in an inel-
egant way. Specifically, when you place a list variable into a label, it displays the
list with spaces between the items, fitting as much as possible on each line. So the
BroadcastListLabel might show the BroadcastList like this:

(+1415111-1111 +1415222-2222 +1415333-3333 +1415444-4444)

To improve this formatting, create a procedure displayBroadcastList using the blocks
listed in Table 11-5. This procedure displays the list with each phone number on a
separate line. Be sure to call the procedure from below the add items to list block so
that the updated list is displayed.

Table 11-5. Blocks to clean up the display of phone numbers in your list

Block type Drawer Purpose

to procedure ("displayBroadcast 
List")

Definitions Create the procedure (do not choose procedure
WithResult).

set BroadcastListLabel
.Text to

BroadcastListLabel Display the list here.

text ("") Text Click text and then click Delete to create an empty text 
object.

foreach Control Iterate through the numbers.

name pnumber in the foreach Name the foreach variable “pnumber”. This is the 
current item as iteration proceeds.

global BroadcastList My Definitions Plug this into the “in list” slot of foreach.

set BroadcastListLabel
.Text to

BroadcastListLabel Modify this with each of the numbers.

make text Text Build a text object from multiple parts.

BroadcastListLabel.Text BroadcastListLabel Add this to the label on each iteration of foreach.

text ("\n") Text Add a newline character so that the next number is on 
the next line.

value pnumber My Definitions The current number from the list.

How the blocks work
The foreach in displayBroadcastList successively adds a phone number to the
end of the label, as shown in Figure 11-6, placing a newline character (\n) between
each item to place each number on a new line.

Adding Behaviors to the Components  179 

Figure 11-6. Displaying the phone numbers with a newline between each

Of course, this displayBroadcastList procedure will not do anything unless you
call it. Place a call to it in the Texting1.MessageReceived event handler, right below
the call to add item to list. The call should replace the blocks that simply set the
BroadcastListLabel.Text to BroadcastList. The call displayBroadcastList block
can be found in My Definitions.

Figure 11-7 shows how the relevant blocks within the Texting1.MessageReceived
event handler should look.

Figure 11-7. Calling the displayBroadcastList procedure

For more information on using foreach to display a list, see Chapter 20. For more
information about creating and calling procedures, see Chapter 21.

180  Chapter 11:  Broadcast Hub

Test your app. Restart the app to clear the list and then have at
least two different phones register (again). Do the phone numbers
appear on separate lines?

Logging the Broadcasted Texts
When a text is received and broadcast to the other phones, the app should log
that occurrence so the administrator can monitor the activity. In the Component
Designer, you added the label LogLabel to the user interface for this purpose. Now,
you’ll code some blocks that change LogLabel each time a new text arrives.

You need to build a text that says something like “message from +1415111–2222 was
broadcast.” The number +1415111–2222 is not fixed data—instead, it is the value of
the argument number that comes with the MessageReceived event. So, to build the
text, you’ll concatenate the first part, “message from”, with a value number block
and finally with the last part of the message, the text “broadcast.”

As you’ve done in previous chapters, use make text to concatenate the parts using
the blocks listed in Table 11-6.

Table 11-6. Blocks to build your log of broadcasted messages

Block type Drawer Purpose

set LogLabel
.Text to

LogLabel Display the log here.

make text Text Build a text object out of multiple parts.

text ("message from") Text This is the report message.

value number My Definitions The sender’s phone number.

text ("broadcast\n") Text Add the last part of “message from 111–2222 broadcast” and include newline.

LogLabel.Text LogLabel Add a new log to the previous ones.

How the blocks work
After broadcasting the received message to all of the numbers in BroadcastList,
the app now modifies the LogLabel to add a report of the just-broadcasted text, as
shown in Figure 11-8. Note that now we add the message to the beginning of the list
instead of the end, so the more recent message sent to the group shows up at the top.

Adding Behaviors to the Components  181 

Figure 11-8. Adding a new broadcast message to the log

The make text block creates new entries of the form:

message from: 111-2222 broadcast

Each time a text is broadcast, the log entry is prepended to (added to the front of) the
LogLabel.Text so that the most recent entries will appear on top. The way you orga-
nize the make text block determines the ordering of the entries. In this case, the new
message is added with the top three slots of make text, and LogLabel.Text—which
holds the existing entries—is plugged into the last slot.

The “\n” in the text “broadcast\n” is the newline character that displays each log entry
on a separate line:

message from: 1112222 broadcast
message from: 555-6666 broadcast

For more information about using foreach to display a list, see Chapter 20.

Storing the BroadcastList in a Database
The app works great so far, but if you’ve completed some of the earlier tutorials,
you’ve probably guessed that there’s a problem: if the administrator closes the app
and relaunches it, the broadcast list will be lost and everyone will have to reregister.
To fix this, you’ll use the TinyDB component to store and retrieve the BroadcastList
to and from a database.

182  Chapter 11:  Broadcast Hub

You’ll use a similar scheme to the one we used in the MakeQuiz app (Chapter 10):

• Store the list to the database each time a new item is added.

• When the app launches, load the list from the database into a variable.

Start by coding the blocks listed in Table 11-7 to store the list in the database. With
the TinyDB component, a tag is used to identify the data and distinguish it from
other data stored in the database. In this case, you can tag the data as “broadcastList.”
You’ll add the blocks in the Texting1.MessageReceived event, under the add items
to list block.

Table 11-7. Blocks to store the list with TinyDB

Block type Drawer Purpose

TinyDB1.Store
Value

TinyDB1 Store the data in the database.

text ("broadcastList") Text Plug this into the “tag” slot of Store
Value.

global Broadcast
List

My Definitions Plug this into the “value” slot of Store
Value.

How the blocks work
When a “joinFMDT” text comes in and the new member’s phone number is added to
the list, TinyDB1.StoreValue is called to store the BroadcastList to the database.
The tag (a text object named “broadcastList”) is used so that you can later retrieve
the data. As shown in Figure 11-9, the value that gets called by StoreValue is the
variable BroadcastList.

Figure 11-9. Calling TinyDB to store the BroadcastList

Adding Behaviors to the Components  183 

Loading the BroadcastList from a Database
Now add the blocks listed in Table 11-8 for loading the list back in each time the app
launches. When the app begins, the Screen1.Initialize event is triggered, so your
blocks will go in that event handler. You’ll call TinyDB.GetValue, using the same tag
you used to store the list (“broadcastList”). At this point, as we’ve done in previous
chapters that work with databases, we have to check if there is actually any data
being returned. In this case, we’ll check if the returned value is a list, because it won’t
be if there isn’t any data in the list yet.

How the blocks work
When the app begins, the Screen1.Initialize event is triggered. The blocks shown in
Figure 11-10 first request the data from the database with TinyDB1.GetValue. The
returned data is placed in the variable valueFromDB, a variable defined to temporarily
hold it.

Table 11-8. Blocks to load the broadcast list back into the app when it launches

Block type Drawer Purpose

def variable ("value-
FromDB")

Definition A temporary variable for holding database data and checking it.

text ("text") Text An initial value for valueFromDB.

Screen1.Initialize Screen1 Triggered when the app launches.

set global valueFrom
DB to

My Definitions Put the returned value here temporarily.

TinyDB1.GetValue TinyDB1 Request the data from the database.

text ("broadcastList") Text Plug this into the “tag” slot of GetValue.

if Control Check if the database had the data.

is a list? List If the data returned is a list, we know it wasn’t empty.

global valueFromDB My Definitions Plug this into is a list?.

set global Broadcast
List to

My Definitions Set this to the value returned from the database.

call displayBroadcast
List

My Definitions After loading data, display it.

184  Chapter 11:  Broadcast Hub

Figure 11-10. Loading the BroadcastList from the database

We need the if block in the event handler because the database will return an empty
text (“”) if it’s the first time the app has been used and there isn’t yet a broadcast list.
By asking if the valueFromDB is a list, you’re making sure there is some data actu-
ally returned. If there isn’t, you’ll bypass the blocks that transfer the returned data
(valueFromDB) into the variable BroadcastList and the blocks to display that data.

Test your app. You can’t use live testing for apps that modify the da-
tabase because each time you click “Connect to Device,” the database
starts out empty. So, to test the database storage and the Screen
.Initialize event handler, you’ll need to package and download the
app to a phone (you can download an app by choosing “Package
for Phone”→“Download to Connected Phone” in the Component
Designer). Once you’ve downloaded your app, use your second and
third test phones to send a text to join the group and then close the
app on your original phone. If the numbers are still listed when you
relaunch the app, then the database part is working.

The Complete App: Broadcast Hub
Figure 11-11 illustrates the blocks in the completed Broadcast Hub app.

The Complete App: Broadcast Hub  185 

Figure 11-11. The complete app

186  Chapter 11:  Broadcast Hub

Variations
After you’ve celebrated building such a complex app, you might want to explore
some variations. For example:

• The app broadcasts each message to everyone, including the phone that sent
the message. Modify this so that the message is broadcast to everyone but the
sender.

• Allow client phones to remove themselves from the list by texting “quitabc” to
the app. You’ll need a remove from list block.

• Let the hub administrator add and remove numbers from the broadcast list
through the user interface.

• Let the hub administrator specify numbers that should not be allowed into the list.

• Customize the app so that anyone can join to receive messages, but only the
administrator can broadcast messages.

• Customize the app so that anyone can join to receive messages, but only a
fixed list of phone numbers can broadcast messages to the group (this is how
the Helsinki event app worked; see http://appinventorblog.com/2010/08/25/
success-story-from-helsinki/).

• The app stores the broadcast list persistently, but not the log. Each time you
close the app and reopen it, the log starts over. Change this so that the log is
persistent.

Summary
Here are some of the concepts we’ve covered in this tutorial:

• Apps can react to events that are not initiated by the app user, like a text being
received. That means you can build apps in which your users are on a different
phone.

• Nested ifelse and foreach blocks can be used to code complex behaviors. For
more information on conditionals and foreach iteration, see Chapters 18 and 20,
respectively.

• The make text block can be used to build a text object out of multiple parts.

• TinyDB can be used to store and retrieve data from a database. A general
scheme is to call StoreValue to update the database whenever the data changes
and call GetValue to retrieve the database data when the app begins.

http://appinventorblog.com/2010/08/25/success-story-from-helsinki/
http://appinventorblog.com/2010/08/25/success-story-from-helsinki/

