
CHAPTER 13

Amazon at the Bookstore

Say you’re browsing books at your favorite book-
store and want to know how much a book costs on
Amazon.com. With the “Amazon at the Bookstore”
app, you can scan a book or enter an ISBN, and the
app will tell you the current lowest price of the book
at Amazon.com. You can also search for books on a
particular topic.

“Amazon at the Bookstore” demonstrates how App
Inventor can be used to create apps that talk to web
services (aka APIs, or application programming inter-
faces). This app will get data from a web service created by one of this book’s authors. By the
end of this chapter, you’ll be able to create your own custom app for talking to Amazon.

The application has a simple user interface that lets the user enter keywords or a book’s
ISBN (international standard book number—a 10- or 13-digit code that uniquely identi-
fies a book) and then lists the title, ISBN, and lowest price for a new copy at Amazon.
It also uses the BarcodeScanner component so the user can scan a book to trigger a
search instead of entering text (technically, the scanner just inputs the book’s ISBN for
you!).

What You’ll Learn
In this app (shown in Figure 13-1), you’ll learn:

• How to use a barcode scanner within an app.

• How to access a web information source (Amazon’s API) through the TinyWebDB
component.

• How to process complex data returned from that web information source. In
particular, you’ll learn how to process a list of books in which each book is itself a
list of three items (title, price, and ISBN).

204  Chapter 13:  Amazon at the Bookstore

You’ll also be introduced to source code that you can use to create your own web
service API with the Python programming language and Google’s App Engine.

Figure 13-1. “Amazon at the Bookstore” running in the emulator

What Is an API?
Before we start designing our components and programming the app, let’s take a
closer look at what an application programmer interface (API) is and how one works.
An API is like a website, but instead of communicating with humans, it communicates
with other computer programs. APIs are often called “server” programs because they
typically serve information to “client” programs that actually interface with humans—
like an App Inventor app. If you’ve ever used a Facebook app on your phone, you’re
using a client program that communicates with the Facebook API server.

In this chapter, you’ll create an Android client app that communicates with an
Amazon API. Your app will request book and ISBN information from the Amazon API,
and the API will return up-to-date listings to your app. Your app will then present the
book data to the user.

The Amazon API you’ll use is specially configured for use with App Inventor. We won’t
get into the gory details here, but it’s useful to know that, because of this configura-
tion, you can use the TinyWebDB component to communicate with Amazon. The
good news is, you already know how to do that! You’ll call TinyWebDB.GetValue to
request information and then process the information returned in the TinyWebDB
.GotValue event handler, just as you do when you use a web database. (You can go
back to the MakeText app in Chapter 10 to refresh your memory if needed.)

What Is an API?  205 

Before creating the app, you’ll need to understand the Amazon API’s protocol, which
specifies the format for your request and the format of the data returned. Just as
different cultures have different protocols (when you meet someone, do you shake
hands, bow, or nod your head?), computers talking to one another have protocols
as well.

The Amazon API you’ll be using here provides a web interface for exploring how the
API works before you start using it. While the API is designed to talk to other comput-
ers, this web interface allows you to see just how that communication will happen.
Following these steps, you can try out what particular GetValue calls will return via
the website, and know that the API interface will behave exactly the same when you
ask it for data via the TinyWebDB component in App Inventor:

1. Open a browser and go to http://aiamazonapi.appspot.com/. You’ll see the
website shown in Figure 13-2.

Figure 13-2. The web interface for the App Inventor Amazon API

2. The page allows you to try the one function you can call with this API: getvalue.
Enter a term (e.g., “baseball”) in the Tag field and then click “Get value.” The web
page will display a listing of the top five books returned from Amazon, as shown
in Figure 13-3.

Figure 13-3. Making a call to the Amazon API to search for books related to the tag (or keyword)
“baseball”

206  Chapter 13:  Amazon at the Bookstore

The value returned is a list of books, each one enclosed in brackets [like this] and
providing the title, cost, and ISBN. If you look closely, you’ll see that each book is
in fact represented as a sublist of another main list. The main list (about baseball)
is enclosed in brackets, and each sublist (or book) is enclosed in its own set of
brackets within the main brackets. So the return value from this API is actually a
list of lists, with each sublist providing the information for one book. Let’s look at
this a bit more closely.

Each left bracket ([) in the data denotes the beginning of a list. The first left
bracket of the result denotes the beginning of the outer list (the list of books). To
its immediate right is the beginning of the first sublist, the first book:

[“The Baseball Codes: Beanballs, Sign Stealing, and Bench-Clearing Brawls: The
Unwritten Rules of America\’s Pastime”, ‘$12.98’, ‘0375424695’]

The sublist has three parts: a title, the lowest current price for the book at
Amazon, and the book’s ISBN. When you get this information into your App
Inventor app, you’ll be able to access each part using select list item, with index
1 for the title, index 2 for the price, and index 3 for the ISBN. (To refresh your mem-
ory on working with an index and lists, revisit the MakeQuiz app in Chapter 10.)

3. Instead of searching by keyword, you can search for a book by entering an ISBN.
To perform such a search, you enter a tag of the form “isbn:xxxxxxxxxxxxx,” as
shown in Figure 13-4.

The double brackets ([[) in the result [['"App Inventor"', '$21.93',
'1449397484']] denote that a list of lists is still returned, even though there is
only one book. It may seem a bit strange now, but this will be important when
we access the information for our app.

Figure 13-4. Querying the Amazon API by ISBN instead of keyword

Designing the Components  207 

Designing the Components
The user interface for our Amazon book app is relatively simple: give it a Textbox
for entering keywords or ISBNs, two buttons for starting the two types of searches
(keyword or ISBN), and a third button for letting the user scan a book (we’ll get to
that in a bit). Then, add a heading label and another label for listing the results that
the Amazon API will return, and finally two non-visible components: TinyWebDB and
a BarcodeScanner. Check your results against Figure 13-5.

Figure 13-5. The Amazon at the Bookstore user interface shown in the Designer

Table 13-1 lists all the components you’ll need to build the UI shown in Figure 13-5.

208  Chapter 13:  Amazon at the Bookstore

Table 13-1. Component list for the “Amazon at the Bookstore” app

Component type Palette group What you’ll name it Purpose

Textbox Basic SearchTextBox The user enters keywords or 
ISBN here.

HorizontalArrangement Screen Arrangements HorizontalArrangement1 Arrange the buttons in a line.

Button Basic KeywordSearchButton Click to search by keyword.

Button Basic ISBNButton Click to search by ISBN.

Button Basic ScanButton Click to scan an ISBN from 
a book.

Label Basic Label1 The header “Search Results.”

Label Basic ResultsLabel Where you’ll display the results.

TinyWebDB Not ready for prime time TinyWebDB1 Talk to Amazon.com.

BarcodeScanner Other stuff BarcodeScanner1 Scan barcodes.

Set the properties of the components in the following way:

1. Set the Hint of the SearchTextBox to “Enter keywords or ISBN”.

2. Set the Text properties of the buttons and labels as shown in Figure 13-5.

3. Set the ServiceURL property of the TinyWebDB component to http://aiamazonapi.
appspot.com/.

Designing the Behavior
For this app, you’ll specify the following behaviors in the Blocks Editor:

Searching by keyword
The user enters some terms and clicks the KeywordSearchButton to invoke an
Amazon search. You’ll call TinyWebDB.GetValue to make it happen.

Searching by ISBN
The user enters an ISBN and clicks the ISBNButton. You’ll package the prefix
“isbn:” with the number entered and run the Amazon search.

Barcode scanning
The user clicks a button and the scanner is launched. When the user scans an
ISBN from a book, your app will start the Amazon search.

Processing the list of books
At first, your app will display the data returned from Amazon in a rudimentary
way. Later, you’ll modify the blocks so that the app extracts the title, price, and
ISBN from each book returned and displays them in an organized way.

http://aiamazonapi.appspot.com/
http://aiamazonapi.appspot.com/

Designing the Behavior  209 

Searching by Keyword
When the user clicks the KeywordSearchButton, you want to grab the text from the
SearchTextbox and send it as the tag in your request to the Amazon API. You’ll use
the TinyWebDB.GetValue block to request the Amazon search.

When the results come back from Amazon, the TinyWebDB.GotValue event handler
will be triggered. For now, let’s just display the result that is returned directly into
the ResultsLabel, as shown in Figure 13-6. Later, after you see that the data is indeed
being retrieved, you can display the data in a more sophisticated fashion.

Figure 13-6. Send the search request to the API and put results in the ResultsLabel

How the blocks work
When the user clicks the KeywordSearchButton, the TinyWebDB1.GetValue request
is made. The tag sent with the request is the information the user entered in the
SearchTextBox.

If you completed the MakeQuiz app (Chapter 10), you know that TinyWebDB
.GetValue requests are not answered immediately. Instead, when the data arrives
from the API, TinyWebDB1.GotValue is triggered. In GotValue, the blocks check the
value returned to see if it’s a list (it won’t be if the Amazon API is offline or there is no
data for the keywords). If it is a list, the data is placed into the ResultsLabel.

Test your app. Enter a term in the search box and click Search By
Keyword. You should get a listing similar to what is shown in Figure
13-7. (It’s not terribly nice-looking, but we’ll deal with that shortly.)

210  Chapter 13:  Amazon at the Bookstore

Figure 13-7. Keyword search result for “dogs”

Searching by ISBN
The code for searching by ISBN is similar, but in this case the Amazon API expects
the tag to be in the form “isbn:xxxxxxxxxxxxx” (this is the protocol the API expects for
searching by ISBN). You don’t want to force the user to know this protocol; the user
should just be able to enter the ISBN in the text box and click Search by ISBN, and the
app will add the “isbn:” prefix behind the scenes with make text. Figure 13-8 shows
the blocks to do that.

Figure 13-8. Using make text to add the isbn: prefix

How the blocks work
The make text block concatenates the “isbn:” prefix with the information the user
has input in the SearchTextBox and sends the result as the tag to TinyWebDB.
GetValue.

Designing the Behavior  211 

Just as with keyword search, the API sends back a list result for an ISBN search—in
this case, a list of just the one item whose ISBN matches the user’s input exactly.
Because the TinyWebDB.GotValue event handler is already set up to process a list of
books (even a list with only one item), you won’t have to change your event handler
to make this work.

Test your app. Enter an ISBN (e.g., 9781449397487) in the
SearchTextBox and click the ISBNButton. Does the book informa-
tion appear?

Don’t Leave Your Users Hanging
As we’ve seen in earlier chapters that work with TinyWebDB, when you call a web
service (API) with TinyWebDB.GetValue, there can be a delay before the data arrives
and TinyWebDB.GotValue is triggered. It is generally a good idea to let users know
the request is being processed so they don’t worry that the app has hung. For this
app, you can place a message in the ResultsLabel each time you make the call to
TinyWebDB.GetValue, as shown in Figure 13-9.

Figure 13-9. Adding a message to let the user know what is happening

How the blocks work
For both the keyword and ISBN searches, a “Searching Amazon…” message is placed
in ResultsLabel when the data is requested. Note that when GotValue is triggered,
this message is overwritten with the actual results from Amazon.

Scanning a Book
Let’s face it: typing on a cell phone isn’t always the easiest thing, and you tend to
make a mistake here and there. It would certainly be easier (and result in fewer
mistakes) if a user could just launch your app and scan the barcode of the book she
is interested in. This is another great built-in Android phone feature you can tap into
easily with App Inventor.

212  Chapter 13:  Amazon at the Bookstore

The function BarcodeScanner.DoScan starts up the scanner. You’ll want to call this
when the ScanButton is clicked. The event handler BarcodeScanner.AfterScan
is triggered once something has been scanned. It has an argument, result, which
contains the information that was scanned. In this case, you want to initiate an ISBN
search using that result, as shown in Figure 13-10.

Figure 13-10. Blocks for initiating an ISBN search after a user scans

How the blocks work
When the user clicks the ScanButton, DoScan launches the scanner. When some-
thing has been scanned, AfterScan is triggered. The argument result holds the
result of the scan—in this case, a book’s ISBN. The user is notified that a request
has been made, the result (the ISBN scanned) is placed in the SearchTextBox, and
TinyWebDB.GetValue is called to initiate the search. Once again, the TinyWebDB
.GotValue event handler will process the book information returned.

Test your app. Click the ScanButton and scan the barcode of a
book. Does the app display the book information?

Designing the Behavior  213 

Improving the Display
A client app like the one you’re creating can do whatever it wants with the data it
receives—you could compare the price information with that of other online stores,
or use the title information to search for similar books from another library.

Almost always, you’ll want to get the API information loaded into variables that you
can then process further. In the TinyWebDB.GotValue event handler you have so far,
you just place all the information returned from Amazon into the ResultsLabel.

Instead, let’s process (or do something to) the data by (1) putting the title, price, and
ISBN of each book returned into separate variables, and (2) displaying those items in
an orderly fashion. By now, you’re really getting the hang of creating variables and
using them in your display, so try building out the variables you think you’ll need and
the blocks to display each search result on its own separate line. Then compare what
you’ve done with Figure 13-11.

How the blocks work
Four variables—resultList, title, cost, and isbn—are defined to hold each piece
of data as it is returned from the API. The result from the API, valueFromWebDB, is
placed into the variable resultList. This app could have processed the argument
valueFromWebDB directly, but in general, you’ll put it in a variable in case you want to
process the data outside the event handler. (Event arguments like valueFromWebDB
hold their value only within the event handler.)

A foreach loop is used to iterate through each item of the result. Recall that the data
returned from Amazon is a list of lists, with each sublist representing the information
for a book. So the placeholder of the foreach is named bookitem, and it holds the
current book information, a list, on each iteration.

Now we have to deal with the fact that the variable bookitem is a list—the first item
is the title, the second, the price; and the third, the ISBN. Thus, select list item blocks
are used to extract these items and place them into their respective variables (title,
price, and isbn).

214  Chapter 13:  Amazon at the Bookstore

Figure 13-11. Extracting the title, cost, and ISBN of each book, then displaying them on separate lines

Once the data has been organized this way, you can process it however you’d like.
This app just uses the variables as part of a make text block that displays the title,
price, and ISBN on separate lines.

Test your app. Try another search and check out how the book
information is displayed. It should look similar to Figure 13-12.

Customizing the API  215 

Figure 13-12. The search listing displayed in a more sophisticated fashion

Customizing the API
The API you connected to, http://aiamazonapi.appspot.com, was created with the
programming language Python and Google’s App Engine. App Engine lets you create
and deploy websites and services (APIs) that live on Google’s servers. You only pay for
App Engine if your site or API becomes very popular (meaning you’re using up a lot
more of Google’s servers for it).

The API service used here provides only partial access to the full Amazon API and re-
turns a maximum of five books for any search. If you’d like to provide more flexibility—
for example, have it search for items other than books—you can download the source
code from http://appinventorapi.com/amazon/ and customize it.

Such customization does require knowledge of Python programming, so beware!
But if you’ve been completing the App Inventor apps in this book, you might just
be ready for the challenge. To get started learning Python, check out the online text
How to Think Like a Computer Scientist: Learning with Python (http://openbookproject
.net//thinkCSpy/) and check out the section on App Inventor API building in Chapter
24 of this book.

216  Chapter 13:  Amazon at the Bookstore

Variations
Once you get the app working, you might want to explore some variations. For
example,

• As is, the app hangs if the search doesn’t return any books (for instance, when
the user enters an invalid ISBN). Modify the blocks so that the app reports when
there are no results.

• Modify the app so that it only displays books under $10.

• Modify the app so that after you scan a book, its lowest Amazon price is spoken
out loud (use the TextToSpeech component discussed in the “Android, Where’s
My Car?” app in Chapter 7).

• Download the http://aiamazonapi.appspot.com API code from http://examples
.oreilly.com/0636920016632/ and modify it so that it returns more information.
For example, you might have it return the Amazon URL of each book, display
the URL along with each listed book, and let the user click the URL to open that
page. As mentioned earlier, modifying the API requires Python programming
and some knowledge of Google’s App Engine. For more information, check out
Chapter 24.

Summary
Here are some of the concepts we’ve covered with this app:

• You can access the Web from an app using TinyWebDB and specially constructed
APIs. You set the ServiceURL of the TinyWebDB component to the API URL and
then call TinyWebDB.GetValue to request the information. The data isn’t imme-
diately returned but can instead be accessed within the TinyWebDB.GotValue
event handler.

• The BarcodeScanner.DoScan function launches the scan. When the user scans
a barcode, the BarcodeScanner.AfterScan event is triggered and the scanned
data is placed in the argument result.

• In App Inventor, complex data is represented with lists and lists of lists. If you
know the format of the data returned from an API, you can use foreach and
select list item to extract the separate pieces of information into variables, and
then perform whatever processing or display you’d like using those variables.

http://aiamazonapi.appspot.com
http://examples.oreilly.com/0636920016632/
http://examples.oreilly.com/0636920016632/

PART II

Inventor’s Manual

This section is organized by concept, like a traditional programming textbook. You’ll
get an overview of app architecture, then delve into programming topics, including
variables, animation, conditional statements, lists, iteration, procedures, databases,
sensors, APIs, and software engineering and debugging. You can refer to these chap-
ters as needed during your app building, or use them for conceptual study as you
ride the bus or relax at night.

